Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024205    DOI: 10.1088/1674-1056/26/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable Nd, La: SrF2 laser and passively Q-switched operation based on gold nanobipyramids saturable absorber

Feng Zhang(张峰)1,2, Hua-Nian Zhang(张华年)1,2, Dan-Hua Liu(刘丹华)1, Jie Liu(刘杰)1,2, Feng-Kai Ma(马凤凯)3, Da-Peng Jiang(姜大朋)3, Si-Yuan Pang(逄思远)3, Liang-Bi Su(苏良碧)3, Jun Xu(徐军)4
1 Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 Institute of Data Science and Technology, Shandong Normal University, Jinan 250014, China;
3 Synthetic Single Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
4 Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  A novel Nd, La:SrF2 disordered crystal is prepared, and its continuous-wave wavelength tuning operation is performed for the first time. Employing a surface plasmon resonance (SPR) based gold nanobipyramids (G-NBPs) saturable absorber, we obtain a compact diode-pumped passively Q-switched Nd, La:SrF2 laser. The stable Q-switched pulse operates with the shortest pulse duration of 1.15 μs and the maximum repetition rate of 41 kHz. The corresponding single pulse energy is 2.24 μJ. The results indicate that G-NBPs could be a promising saturable absorber applied to the diode-pumped solid state lasers (DPSSLs).
Keywords:  tunable laser      Q-switching      Nd      La:SrF2 crystal      gold nanobipyramids  
Received:  13 July 2016      Revised:  18 September 2016      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.60.Gd (Q-switching)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475089, 51432007, and 61422511).
Corresponding Authors:  Dan-Hua Liu, Jie Liu     E-mail:  danhua_liu@126.com;jieliu@sdnu.edu.cn

Cite this article: 

Feng Zhang(张峰), Hua-Nian Zhang(张华年), Dan-Hua Liu(刘丹华), Jie Liu(刘杰), Feng-Kai Ma(马凤凯), Da-Peng Jiang(姜大朋), Si-Yuan Pang(逄思远), Liang-Bi Su(苏良碧), Jun Xu(徐军) Tunable Nd, La: SrF2 laser and passively Q-switched operation based on gold nanobipyramids saturable absorber 2017 Chin. Phys. B 26 024205

[1] Liu J, Fan M W, Su L B, Jiang D P, Ma F K, Zhang Q and Xu J 2014 Laser Phys. 24 035802
[2] Kaminskii A A, Bohat'y L, Becker P, Eichler H J and Rhee H 2007 Laser Phys. Lett. 4 668
[3] Zhu J F, Zhang L J, Gao Z Y, Wang J L, Wang Z H, Su L B, Zheng L H, Wang J Y, Xu J and Wei Z Y 2015 Laser Phys. Lett. 12 035801
[4] Doualan J L, Su L B, Brasse G, Benayad A, Ménard V, Zhan Y Y, Braud A, Camy P, Xu J and Moncorgé R 2013 J. Opt. Soc. Am. B 30 3018
[5] Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorgé R, Zhan Y Y, Zheng L H, Qian X B and Xu J 2013 Laser Phys. Lett. 10 035804
[6] Jelínek M, Kubeček V, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X and Xu J 2014 Laser Phys. Lett. 11 055001
[7] Zhang Q, Su L B, Jiang D P, Ma F K, Qin Z P, Xie G Q, Zheng J G, Deng Q H, Zheng W G, Qian L J and Xu J 2015 Chin. Opt. Lett. 13 071402
[8] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X and Xu J 2014 Opt. Lett. 39 1737
[9] Wei L, Han H N, Tian W L, Liu J X, Wang Z H, Zhu Z, Jia Y L, Su L B, Xu J and Wei Z Y 2014 Appl. Phys. Express 7 092704
[10] Zhang F, Fan X W, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B, Xu J 2016 Opt. Mater. Express 6 1513
[11] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[12] Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C and Cai Z 2010 Opt. Lett. 35 3709
[13] Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
[14] Baek I H, Lee H W, Bae S, Hong B H, Ahn Y H, Yeom D I and Rotermund F 2012 Appl. Phys. Express 5 032701
[15] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F and Basko D M 2010 ACS Nano 4 803
[16] Sotor J, Sobon G and Abramski K M 2014 Opt. Express 22 13244
[17] Luo Z C, Liu M, Liu H, Zheng X W, Luo A P, Zhao C J, Zhang H, Wen S C, and Xu W C 2013 Opt. Lett. 38 5212
[18] Liu J H, Tian J R, Hu M T, Xu R Q, Dou Z Y, Yu Z H and Song Y R 2015 Chin. Phys. B 24 024215
[19] Lin Y H, Chi Y C and Lin G R 2013 Laser Phys. Lett. 10 055105
[20] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538
[21] Zhu J F, Wang X L, He B R, et al. 2015 Chin. Phys. B 24 097601
[22] Mao D, Wang Y, Ma C, Han L, Jiang B, Gan X, Hua S, Zhang W, Mei T and Zhao J 2015 Sci. Rep. 5 7965
[23] Zhao C, Zou Y, Chen Y, Wang Z, Lu S, Zhang H, Wen S and Tang D Y 2012 Opt. Express 20 27888
[24] Elim H I, Yang J, Lee J Y, Mi J and Ji W 2006 Appl. Phys. Lett. 88 083107
[25] Jiang T, Xu Y, Tian Q J, Liu L, Kang Z, Yang R Y, Qin G S and Qin W P 2012 Appl. Phys. Lett. 101 151122
[26] Kim K H, Griebner U and Herrmann J 2012 Opt. Lett. 37 1490
[27] Kim K H, Griebner U and Herrmann J 2012 Opt. Express 20 16174
[28] Kang Z, Xu Y, Zhang L, Jia Z X, Liu L, Zhao D, Feng Y, Qin G S and Qin W P 2013 Appl. Phys. Lett. 103 041105
[29] Kang Z, Guo X Y, Jia Z X, Xu Y, Liu L, Zhao D, Qin G S and Qin W P 2013 Opt. Mater. Express 3 1986
[30] Kang Z, Gao X J, Zhang L, Feng Y, Qin G S and Qin W P 2015 Opt. Mater. Express 5 794
[31] Wang X D, Luo Z C, Liu H, Liu M, Luo A P and Xu W C 2014 Appl. Phys. Lett. 105 161107
[32] Liao H B, Xiao R F, Fu J S, Yu P, Wong G K L and Sheng P 1997 Appl. Phys. Lett. 70 1
[33] Yamashita S 2012 J. Lightwave Technol. 30 427
[34] Zhang T H, Ying M R, Fang Z Y, Yang H D, et al. 2005 Physics 34 0 (in Chinese)
[35] Kang Z, Xu Y, Zhang L, Jia Z, Liu L, Zhao D and Qin W 2013 Appl. Phys. Lett. 103 041105
[36] Jiang T, Xu Y, Tian Q, Liu L, Kang Z, Yang R and Qin W 2012 Appl. Phys. Lett. 101 151122
[37] Kang Z, Guo X, Jia Z, Xu Y, Liu L, Zhao D and Qin W P 2013 Opt. Mater. Express 3 1986
[38] Kang Z, Li Q, Gao X J, Zhang L, Jia Z X, Feng Y and Qin W P 2014 Laser Phys. Lett. 11 035102
[39] Fan D F, Mou C, Bai X, Wang S, Chen N and Zeng X 2014 Opt. Express 22 18537
[40] Zhang H N and Liu J 2016 Opt. Lett. 41 1150
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[6] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[7] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[8] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[9] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[10] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[11] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[12] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[13] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[14] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[15] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
No Suggested Reading articles found!