Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114214    DOI: 10.1088/1674-1056/25/11/114214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A proposal for the generation of optical frequency comb in temperature insensitive microcavity

Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We numerically simulate the generation of an optical frequency comb (OFC) in a microring based on the traditional Si3N4 strip waveguide and a temperature compensated slot waveguide. The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 K in either low-Q (105) or high Q (106) microcavity with the well-designed slot waveguide, which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.
Keywords:  temperature insensitive      optical frequency comb      flattened dispersion      slot waveguide  
Received:  06 May 2016      Revised:  30 September 2016      Accepted manuscript online: 
PACS:  42.79.Nv (Optical frequency converters)  
  42.79.Gn (Optical waveguides and couplers)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61435002, 61527823, and 61321063).
Corresponding Authors:  Shaowu Chen     E-mail:  swchen@semi.ac.cn

Cite this article: 

Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武) A proposal for the generation of optical frequency comb in temperature insensitive microcavity 2016 Chin. Phys. B 25 114214

[1] Holzwarth R, Udem T, Hänsch T W, Knight J C, Wadsworth W J and Russell P S J 2000 Phys. Rev. Lett. 852264
[2] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hansch T W 2000 Phys. Rev. Lett. 845102
[3] Thorpe M J, Moll K D, Jones R J, Safdi B and Ye J 2006 Science 3111595
[4] Diddams S A, Hollberg L and Mbele V 2007 Nature 445627
[5] Diddams S A, Udem T, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R and Wineland D J 2001 Science 293825
[6] Goulielmakis E, Yakovlev V S, Cavalieri A L, Uiberacker M, Pervak V, Apolonski A, Kienberger R, Kleineberg U and Krausz F 2007 Science 317769
[7] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 4501214
[8] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332555
[9] Del'Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R and Kippenberg T J 2011 Phys. Rev. Lett. 107063901
[10] Carmon T, Yang L and Vahala K J 2004 Opt. Express 124742
[11] Grudinin I S, Yu N and Maleki L 2009 Opt. Lett. 34878
[12] Del'Haye P, Arcizet O, Schliesser A, Holzwarth R and Kippenberg T J 2008 Phys. Rev. Lett. 101053903
[13] Foster M A, Levy J S, Kuzucu O, Saha K, Lipson M and Gaeta A L 2011 Opt. Express 1914233
[14] Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M and Gaeta A L 2011 Opt. Lett. 363398
[15] Levy J S, Gondarenko A, Foster M A, Turner-Foster A C, Gaeta A L and Lipson M 2010 Nat. Photonics 437
[16] Bian D, Chen S, Lei X, Qin G and Chen Z 2016 Appl. Opt. 554827
[17] Bao C, Zhang L, Matsko A, Yan Y, Zhao Z, Xie G, Agarwal A M, Kimerling L C, Michel J, Maleki L and Willner A E 2014 Opt. Lett. 396126
[18] Zhang L, Bao C, Singh V, Mu J, Yang C, Agarwal A M, Kimerling L C and Michel J 2013 Opt. Lett. 385122
[19] Bao C, Zhang L, Yan Y, Huang H, Xie G, Agarwal A, Kimerling L, Michel J and Willner A 2014 CLEO:Scienceand Innovations, June 8-13, 2014, San Jose, CA, p. SM1M. 5
[20] Coen S and Erkintalo M 2013 Opt. Lett. 381790
[21] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87053852
[22] Zhang X, Liu T, Jiang J, Feng M and Liu K 2014 Opt. Commun. 332125
[23] Jaramillo-Villegas J A, Xue X, Wang P H, Leaird D E and Weiner A M 2015 Opt. Express 239618
[24] Herr T, Hartinger K, Riemensberger J, Wang C Y, Gavartin E, Holzwarth R, Gorodetsky M L and Kippenberg T J 2012 Nat. Photonics 6480
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[3] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[6] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[7] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[8] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[9] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[10] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
[11] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[12] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
[13] Two-photon spectrum of 87Rb using optical frequency comb
Wang Li-Rong (汪丽蓉), Zhang Yi-Chi (张一驰), Xiang Shao-Shan (向少山), Cao Shu-Kai (曹书凯), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(6): 063201.
[14] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
[15] Pump-induced carrier envelope offset frequency dynamics and stabilization of an Yb-doped fiber frequency comb
Zhao Jian (赵健), Li Wen-Xue (李文雪), Yang Kang-Wen (杨康文), Shen Xu-Ling (沈旭玲), Bai Dong-Bi (白东碧), Chen Xiu-Liang (陈修亮), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(12): 124206.
No Suggested Reading articles found!