Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068102    DOI: 10.1088/1674-1056/25/6/068102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coalbed methane adsorption and desorption characteristics related to coal particle size

Yan-Yan Feng(冯艳艳)1,2, Wen Yang (杨文)1,2, Wei Chu(储伟)2
1 Department of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China;
2 Department of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract  

Effects of particle size on CH4 and CO2 adsorption and desorption characteristics of coals are investigated at 308 K and pressures up to 5.0 MPa. The gas adsorption and desorption isotherms of coals with particle sizes ranging from 250 μm to 840 μm are measured via the volumetric method, and the Langmuir model is used to analyse the experimental results. Coal particle size is found to have an obvious effect on the coal pore structure. With the decrease of coal particle size in the process of grinding, the pore accessibility of the coal, including the specific surface area and pore volume, increases. Hence, coal with smaller particle size has higher specific surface area and higher pore volume. The ability of adsorption was highly related to the pore structure of coal, and coal particle size has a significant influence on coal adsorption/desorption characteristics, including adsorption capacity and desorption hysteresis for CH4 and CO2, i.e., coal with a smaller particle size achieves higher adsorption capacity, while the sample with a larger particle size has lower adsorption capacity. Further, coal with larger particle size is also found to have relatively large desorption hysteresis. In addition, dynamic adsorption performances of the samples are carried out at 298 K and at pressures of 0.1 MPa and 0.5 MPa, respectively, and the results indicate that with the increase of particle size, the difference between CO2 and CH4 adsorption capacities of the samples decreases.

Keywords:  particle size      coalbed methane      adsorption      desorption  
Received:  01 December 2015      Revised:  28 January 2016      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  89.30.ag (Coal)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB201202).

Corresponding Authors:  Wei Chu     E-mail:  chu1965chengdu@163.com

Cite this article: 

Yan-Yan Feng(冯艳艳), Wen Yang (杨文), Wei Chu(储伟) Coalbed methane adsorption and desorption characteristics related to coal particle size 2016 Chin. Phys. B 25 068102

[1] Yang W, Feng Y Y, Xiao D and Yuan H Y 2015 Int. J. Energ. Res. 39 805
[2] Zhang S I, Huo Y Z, Ye J P, Tang S H and Ma D M 2005 Chin. Sci. Bull. 50 158
[3] Zhao Y and Peng H Y 2013 Disa. Adv. 6 291
[4] Lin D Y, Ye J P, Qin Y and Tang S H 2000 Acta Geol. Sin.-Engl. 74 706
[5] Zhang D F, Gu L L, Li S G, Lian P C and Tao J 2013 Energ. Fuel 27 387
[6] Zheng J J, Zhou Y P, Zhi Y T, Su W and Sun Y 2012 Adsorption 18 121
[7] Harpalani S, Prusty B K and Dutta P 2006 Energ. Fuel 20 1591
[8] Ottiger S, Pini R, Storti G and Mazzotti M 2008 Adsorption 14 539
[9] Jodlowski G S, Baran P, Wójcik M, Nodzeński A, Porada S and Milewska-Duda J 2007 Appl. Surf. Sci. 253 5732
[10] Ziarani A S, Aguilera R and Clarkson C R 2011 Fuel 90 2428
[11] Lafortune S, Adelise F, Bentivegna G, Didier C, Farret R, Gombert P, Lagnya C, Pokryszkaa Z and Toimil N C 2014 Energ. Procedia 63 5870
[12] Nie B S, Liu X, Yang L, Meng J and Li X 2015 Fuel 158 908
[13] Liu H, Mou J and Cheng Y 2015 J. Nat. Gas Sci. Eng. 22 203
[14] Nie B S, Yang T, Li X C, Li L and Lu H Q 2013 J. China Univ. Min. Technol. 42 975 (in Chinese)
[15] Weishauptova Z and Sykorova I 2011 Fuel 90 312
[16] Garnier C, Finqueneisel G, Zimny T, Pokryszka Z, Lafortune S, Defossez P D C and Gaucher E C 2011 Int. J. Coal Geol. 87 80
[17] Zhang D F, Cui Y J, Liu B, Li S G, Song W L and Lin W G 2011 Energ. Fuel 25 1891
[18] Ozdemir E and Schroeder K 2009 Energ. Fuel 23 2821
[19] Nie B S, Liu X F, Guo J H and Zhu F F 2015 J. China Univ. Min. Technol. 44 781 (in Chinese)
[20] Zhao D, Zhao Y S, Feng Z C, Liu Z X and Liu T 2012 Energ. Source Part A 34 324
[21] Sun W J, Feng Y Y, Jiang C F and Chu W 2015 Fuel 155 7
[22] Feng Y Y, Jiang C F, Liu D J and Chu W 2014 Chin. Phys. B 23 028201
[23] Hou Q L and Li X S 2014 Physics 43 373 (in Chinese)
[24] Feng Y Y, Yang W and Chu W 2014 Chin. Phys. B 23 108201
[25] Yan J, Xu W Y, Guo H, Gong Y, Mi Y M and Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese)
[26] Liang J Q, Liang Z Z, Zhu W B and Su F G 2011 Acta Phys. Sin. 60 057802 (in Chinese)
[27] Cygankiewicz J, Dudzinska A and Zyla M 2007 Arch. Min. Sci. 52 573
[28] Zhang D F, Li S G, Cui Y J, Song W L and Lin W G 2011 Ind. Eng. Chem. Res. 50 8742
[29] Cui Y J, Zhang D F, Zhang Q, Lin W G, Song W L, Li Y H and Jiang W P 2010 Acta Geol. Sin.-Engl. 84 1547
[30] Hao S X, Wen J, Yu X P and Chu W 2013 Appl. Surf. Sci. 264 433
[31] Weniger P, Francu J, Hemza P and Krooss B M 2012 Int. J. Coal Geol. 93 23
[32] Feng Y Y, Jiang C F, Liu D J and Chu W 2013 J. Anal. Appl. Pyrol. 104 559
[33] Fitzgerald J E, Pan Z, Sudibandriyo M, Robinson R L, Gasem K A M and Reeves S 2005 Fuel 84 2351
[34] Feng Y Y, Yang W, Liu D J and Chu W 2013 Chin. J. Chem. 31 1102
[35] Zhang X D, Sang S X, Qin Y, Zhang J and Tang J X 2005 J. China Univ. Min. Technol. 34 427 (in Chinese)
[36] Xu J, Liu D, Peng S, Wu X and Lu Q 2010 Chin. J. Rock Mech. Eng. 29 1231
[37] Wang C Y, Hao S X, Sun W J and Chu W 2012 Int. J. Min. Sci. Technol. 22 855
[38] Yang K, Lu X, Lin Y and Neimark A V 2010 Energ. Fuel 24 5955
[1] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
Jia-Li Liu(刘佳丽), Guo-Dong Fu(付国栋), Ping Wu(吴平), Shang Liu(刘尚), Jin-Guang Yang(杨金光), Shi-Ping Zhang(张师平), Li Wang(王立), Min Xu(许闽), and Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2022, 31(11): 118101.
[5] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[6] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[7] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[8] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[9] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[10] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[11] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
[12] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[13] Beryllium carbide as diffusion barrier against Cu: First-principles study
Hua-Liang Cao(曹华亮), Xin-Lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2020, 29(1): 016601.
[14] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[15] Real-space observation on standing configurations of phenylacetylene on Cu (111) by scanning probe microscopy
Jing Qi(戚竞), Yi-Xuan Gao(高艺璇), Li Huang(黄立), Xiao Lin(林晓), Jia-Jia Dong(董佳家), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(6): 066801.
No Suggested Reading articles found!