Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067401    DOI: 10.1088/1674-1056/25/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions

Tao Hua(花涛)1,2, Wei-Wei Xu(许伟伟)2, Zheng-Ming Ji(吉争鸣)2, Da-Yuan Guo(郭大元)2, Qing-Yun Wang(王青云)1, Xiang-Rong Ma(马湘蓉)1, Rui-Yu Liang(梁瑞宇)1
1 School of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  

The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current-voltage characteristics (I-Vxx and I-Vxy). It is found that the I-Vxx curve diverges from linearity at a high driving current, while the I-Vxy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force.

Keywords:  grain boundary      bicrystal Josephson junction      inclined angle      high temperature superconductor  
Received:  31 October 2015      Revised:  01 February 2016      Accepted manuscript online: 
PACS:  74.25.F- (Transport properties)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.25.Sv (Critical currents)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

Corresponding Authors:  Tao Hua     E-mail:  huataonju@163.com

Cite this article: 

Tao Hua(花涛), Wei-Wei Xu(许伟伟), Zheng-Ming Ji(吉争鸣), Da-Yuan Guo(郭大元), Qing-Yun Wang(王青云), Xiang-Rong Ma(马湘蓉), Rui-Yu Liang(梁瑞宇) Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions 2016 Chin. Phys. B 25 067401

[1] Chen J, Horiguchi H, Wang H B, Nakajima K, Yamashita T and Wu P H 2002 Supercond. Sci. Technol. 15 1680
[2] Hua T, Xu W W, Zhang Y, Jiang L, An D Y, Shi J X, Yu M, Wang Z H, Chen J, Kang L, Jing B B, Wang H B and Wu P H 2015 Supercond. Sci. Technol. 28 025005
[3] Gurevich A and Ciovati G 2008 Phys. Rev. B 77 104501
[4] Ding F Z, Gu H W, Wang H Y, Zhang H L, Zhang T, Qu F, Dong Z B and Zhou W W 2015 Chin. Phys. B 24 057401
[5] Naqib S H and Islam R S 2015 Chin. Phys. B 24 017402
[6] Puig T, Gutiérrez J, Pomar A, Llordés A, Gázquez J, Ricart S, Sandiumenge F and Obradors X 2008 Supercond. Sci. Technol. 21 034008
[7] Zhu B Y, Dong J M, Xing D Y and Zhao B R 1998 Phys. Rev. B 57 5075
[8] Horide T, Matsumoto K, Ichinose A, Mukaida M, Yoshida Y and Horii S 2007 Phys. Rev. B 75 020504
[9] Feldmann D M, Holesinger T G, Feenstra R, Cantoni C, Zhang W, Rupich M, Li X, Durrell J H, Gurevich A and Larbalestier D C 2007 J. Appl. Phys. 102 083912
[10] Hilgenkamp H and Mannhart 2002 Rev. Mod. Phys. 74 485
[11] Dimos D, Chaudhari P and Mannhart J 1990 Phys. Rev. B 41 4038
[12] Hogg M J, Kahlmann F, Tarte E J, Barber Z H and Evetts J E 2001 Appl. Phys. Lett. 78 1433
[13] Jukna A, Barboy I, Jung G, Banerjee S S, Myasoedov Y, Plausinaitiene V, Abrutis A, Li X, Wang D and Sobolewski R 2005 Appl. Phys. Lett. 87 192504
[14] Shlyk L, Nenkov K, Krabbes G, Fuchs G, Mickel C and Rellinghaus B 2006 Supercond. Sci. Technol. 19 S472
[15] Horide T, Matsumoto K, Yoshida Y, Mukaida M, Ichinose A and Horii S 2008 Phys. Rev. B 77 132502
[16] Durrell J H, Feldmann D M and CantoniC 2007 Appl. Phys. Lett. 91 182506
[17] Faleski M C, Marchetti M C and Middleton A A 1996 Phys. Rev. B 54 12427
[18] Groth J, Reichhardt C, Olson C J, Field S B and Nori F 1996 Phys. Rev. Lett. 21 3625
[19] Zhu B Y, Xing D Y, Dong J M and Zhao B R 1999 Physica C 311 140
[20] Brass A and Jensen H J. 1989 Phys. Rev. B 39 9587
[21] Kwok W K, Fendrich J A, Vinokur V M, Koshelev A E and Crabtree G W 1996 Phys. Rev. Lett. 76 4596
[22] Wang H Y, Ding F Z, Gu H W, Zhang T and Peng X Y 2014 Chin. Phys. B 23 0107402
[23] Hilgenkamp H, Schneider C W, Goetz B, Schulz R R, Schmehl A and Bielefeldt H 1999 Supercond. Sci. Technol. 12 1043
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[4] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[5] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[6] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[7] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[8] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[9] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[10] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[11] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[12] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[13] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[14] Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110]
Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋). Chin. Phys. B, 2019, 28(12): 126201.
[15] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
No Suggested Reading articles found!