|
|
Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties |
Hai-Tao Zhou(周海涛)1, Ning Yu(喻宁)2, Fei Zou(邹飞)1, Zhao-Hui Yao(姚朝晖)2, Ge Gao(高歌)1, Cheng-Min Shen(申承民)3 |
1. Chinese Aeronautical Establishment, Beijing 100012, China;
2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
3. Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Vertically standing graphene (VSG) sheets have been fabricated by using plasma enhanced chemical vapor deposition (PECVD) method. The lateral size of VSG nanosheets could be well controlled by varying the substrate temperature. The higher temperature usually gives rise to a smaller sheet size. The wettability of VSG films was tuned between hydrophobicity and hydrophilicity by means of oxygen and hydrogen plasma treatment. The supercapacitor electrode made of VSG sheets exhibited an ideal double-layer-capacitor feature and the specific capacitance reached a value up to 9.62 F·m-2.
|
Received: 12 June 2016
Revised: 04 July 2016
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
61.30.Hn
|
(Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)
|
|
82.47.Uv
|
(Electrochemical capacitors; supercapacitors)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01603), the National Natural Science Foundation of China (Grant No. 61335006), and the Chinese Academy of Sciences (Grant Nos. 1731300500015 and XDB07030100). |
Corresponding Authors:
Cheng-Min Shen
E-mail: cmshen@iphy.ac.cn
|
Cite this article:
Hai-Tao Zhou(周海涛), Ning Yu(喻宁), Fei Zou(邹飞), Zhao-Hui Yao(姚朝晖), Ge Gao(高歌), Cheng-Min Shen(申承民) Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties 2016 Chin. Phys. B 25 096106
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[3] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
|
[4] |
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[5] |
Yang X W, Cheng C, Wang Y F, Qiu L and Li D 2013 Science 341 534
|
[6] |
Zhang Y, Du J L, Tang S, Liu P, Deng S Z, Chen J and Xu N S 2012 Nanotechnol. 23 015202
|
[7] |
Jiang L L, Yang T Z, Liu F, Dong J, Yao Z H, Shen C M, Deng S Z, Xu N S, Liu Y Q and Gao H J 2013 Adv. Mater. 25 250
|
[8] |
Sun J Y, Chen Y B, Cai X, Ma B J, Chen Z L, Priydarshi M K, Chen K, Gao T, Song X J, Ji Q Q, Guo X F, Zou D C, Zhang Y F and Liu Z F 2015 Nano Res. 8 3496
|
[9] |
Chen X D, Chen Z L, Sun J Y, Zhang Y F and Liu Z F 2016 Acta Phys. Chim Sin. 32 14
|
[10] |
Zhu M Y, Wang J J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V and Manos D M 2007 Carbon 45 2229
|
[11] |
Dong J, Yao Z H, Yang T Z, Jiang L L and Shen C M 2013 Sci. Rep. 3 1733
|
[12] |
Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P C 2006 Nano Lett. 6 2667
|
[13] |
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
|
[14] |
Liu D H, Yang W, Zhang L C, Zhang J, Meng J L, Yang R, Zhang G Y and Shi D X 2014 Carbon 72 387
|
[15] |
Zhang L C, Shi Z W, Liu D H, Yang R, Shi D X and Zhang G Y 2012 Nano Res. 5 258
|
[16] |
Xiu Y H, Hess D W and Wong C R 2008 J. Colloid Interf. Sci. 326 465
|
[17] |
Choi C H, Ulmanella U, Kim J, Ho C M and Kim C J 2006 Phys. Fluids 18 087105
|
[18] |
Wang S T, Feng L and Jiang L 2006 Adv. Mater. 18 767
|
[19] |
Lin Z Y, Liu Y and Wong C P 2010 Langmuir 26 16110
|
[20] |
Aria A I, Kidambi P R, Weatherup R S, Xiao L, Williams J A and Hofmann S 2016 J. Phys. Chem. C 120 2215
|
[21] |
Parobek D and Liu H T 2015 2$D Mater. 2 032001
|
[22] |
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Nature 458 872
|
[23] |
Lerf A, He H Y, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477
|
[24] |
Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F and Huang F Q 2015 Science 350 1508
|
[25] |
Simon P and Gogotsi Y 2008 Nat. Mater. 7 845
|
[26] |
Yoo J J, Balakrishnan K, Huang J S, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L M, Yu J, Vajtai R and Ajayan P M 2011 Nano Lett. 11 1423
|
[27] |
Liu C G, Yu Z N, Neff D, Zhamu A and Jang B Z 2010 Nano Lett. 10 4863
|
[28] |
Chen W, Fan Z L, Zeng G F and Lai Z P 2013 J. Power Sources 225 251
|
[29] |
Wang D W, Li F, Wu Z S, Ren W C and Cheng H M 2009 Electrochem. Commun. 11 1729
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|