Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047301    DOI: 10.1088/1674-1056/25/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design of terahertz beam splitter based on surface plasmon resonance transition

Xiang Liu(刘项)1,2, Dong-Xiao Yang(杨冬晓)1,2
1 College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
2 Research Center for Terahertz Technology, Zhejiang University, Hangzhou 310027, China
Abstract  According to the resonance transition between propagating surface plasmon and localized surface plasmon, we demonstrate a design of beam splitter that can split terahertz wave beams in a relatively broad frequency range. The transmission properties of the beam splitter are analyzed utilizing the finite element method. The resonance transition between two kinds of plasmons can be explained by a model of coherent electron cloud displacement.
Keywords:  terahertz      surface plasmon      splitter      resonance transition  
Received:  22 July 2015      Revised:  25 December 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.65.-y (Plasma simulation)  
  87.50.u-  
  91.30.Fn (Surface waves and free oscillations)  
Corresponding Authors:  Dong-Xiao Yang     E-mail:  yangdx@zju.edu.cn

Cite this article: 

Xiang Liu(刘项), Dong-Xiao Yang(杨冬晓) Design of terahertz beam splitter based on surface plasmon resonance transition 2016 Chin. Phys. B 25 047301

[1] Tian Z, Azad A K, Lu X C, Gu J Q, Han J G, Xing Q R, Taylor A J, O'Hara J F and Zhang W 2010 Opt. Express 18 12482
[2] Gan Q Q, Fu Z, Ding Y J and Bartoli F J 2008 Phys. Rev. Lett. 100 256803
[3] Shen X, Moreno G, Chahadih A, Akalin T and Cui T J 2014 39th International Conference Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 14-19, 2014, Tucson, USA, p. 1
[4] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H and Qin S Q 2015 Chin. Phys. B 24 015203
[5] Yang Y P, Ranjan S and Zhang W L 2014 Chin. Phys. B 23 128702
[6] Berry C W and Jarrahi M 2012 J. Infrared Millim. Technol. 33 127
[7] Zhou Y J, Jiang Q and Cui T J 2011 Opt Express 19 5260
[8] Dragoman M and Dragoman D 2008 Prog. Quantum Electron. 32 1
[9] Srajer J, Schwaighofer A, Ramer G, Frank P, Lendl B and Nowak C 2014 Plasmonics 9 707
[10] Xia S, Yang D X, Li T, Liu X and Wang J 2014 Opt. Lett. 39 001270
[11] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[12] Ordal M A, Bell R J, Alexander R W, Long L L and Querry M R 1985 Appl. Opt. 24 4493
[13] Shibayama J, Uchizono Y, Ozaki S, Yamauchi J and Nakano H 2014 Opt. Quantum Electron. 46 345
[14] Fernández-Domínguez A I, Moreno E, Martin-Moreno L and García-Vidal F J 2009 Phys. Rev. B 79 233104
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!