Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028703    DOI: 10.1088/1674-1056/25/2/028703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

Ying-Ying Yu(于莹莹), Xu-You Li(李绪友), Kun-Peng He(何昆鹏), Bo Sun(孙波)
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract  We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter.
Keywords:  terahertz      waveguide sensor      hybrid-cladding hollow structure  
Received:  21 August 2015      Revised:  28 September 2015      Accepted manuscript online: 
PACS:  87.50.U-  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Pa (Sensors, gyros)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51309059).
Corresponding Authors:  Ying-Ying Yu     E-mail:  yuyingying58@hotmail.com

Cite this article: 

Ying-Ying Yu(于莹莹), Xu-You Li(李绪友), Kun-Peng He(何昆鹏), Bo Sun(孙波) Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing 2016 Chin. Phys. B 25 028703

[1] Debus C and Bolivar P H 2007 Appl. Phys. Lett. 91 184102
[2] Klatt G, Nagel M, Dekorsy T and Bartels A 2009 Electron. Lett. 45 310
[3] Sizov F 2010 Opto-Electron. Rev. 18 10
[4] Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G and Ding X 2009 Chin. J. Lasers 36 2213 (in Chinese)
[5] Kleine-Ostmann T and Nagatsuma 2011 J. Infrared Milli. Terahz. Waves 32 143
[6] Song H J, Ajito K, Muramoto Y, Wakatuski A, Nagatsuma T and Kukutsu N 2012 Electron. Lett. 48 953
[7] Mittleman D M, Gupta M, Neelamani R, Baraniuk G, Rudd J V and Koch M 1999 Appl. Phys. B 68 1085
[8] Amanti M I, Scalari G, Beck M and Faist J 2012 Opt. Express 20 2772
[9] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padila W J 2014 Nat. Photon. 8 605
[10] Chen D R and Chen H B 2010 Opt. Express 18 3762
[11] Yin G B, Li S G, Wang X Y and Liu S 2011 Chin. Phys. B 20 090701
[12] Xu D G, Wang Y Y, Yu H, Li J Q, Li Z X, Yan C, Zhang H, Liu P X, Zhong K, Wang W P and Yao J Q 2014 Chin. Phys. B 23 054210
[13] Mendis R and Grischkowsky 2000 J. Appl. Phys. 88 4449
[14] Chen L J, Chen H W, Kao T F, Lu J Y and Sun C K 2006 Opt. Lett. 31 308
[15] Lai C H, Hsueh Y C, Chen H W, Huang Y J, Chang H C and Sun C K 2009 Opt. Lett. 34 3457
[16] Wang K L and Mittleman D M 2004 Nature 432 376
[17] McGowan R W, Gallot G and Grischkowsky D 1999 Opt. Lett. 24 1431
[18] Mendis R and Grischkowsky D 2001 Opt. Lett. 26 846
[19] Anthony J, Leonhardt R and Argyros A 2013 Opt. Express 21 2903
[20] Sun B, Tang X, Zeng X and Shi Y 2012 Appl. Opt. 51 7276
[21] Yu Y Y, Li X Y, Sun B and He K P 2015 Chin. Phys. B 24 068702
[22] Li J N, Shah C M, Withayachumnankul W, Ung B S Y, Mitchell A, Sriram S, Bhaskaran M, Chang S J and Abbott D 2013 Appl. Phys. Lett. 102 121101
[23] Kurt H and Citrin D S 2005 Appl. Phys. Lett. 87 241119
[24] Fan F, Chen S, Lin W, Miao Y P, Chang S J, Liu B, Wang X H and Lin L 2013 Appl. Phys. Lett. 103 161115
[25] Fan F, Chen S, Wang X H, Wu P F and Chang S J 2015 IEEE Photon. Technol. Lett. 27 478
[26] You B, Lu J Y, Yu C P, Liu T A and Peng J L 2012 Opt. Express 20 5858
[27] Markov A and Skorobogatiy M 2013 Appl. Phys. Lett. 103 181118
[28] Nielsen K, Rasmussen H K, Jepsen P U and Bang O 2010 Opt. Lett. 35 2879
[29] Harrington J A, George R, Pedersen P and Mueller E 2004 Opt. Express 12 5263
[30] Cao Y, Li R M and Tong Z R 2013 Acta. Phys. Sin. 62 084215 (in Chinese)
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!