Abstract We investigate the conductivity characteristics in the surface accumulation layer of a junctionless nanowire transistor fabricated by the femtosecond laser lithography on a heavily n-doped silicon-on-insulator wafer. The conductivity of the accumulation region is totally suppressed when the gate voltage is more positive than the flatband voltage. The extracted low field electron mobility in the accumulation layer is estimated to be 1.25 cm2·V-1·s-1. A time-dependent drain current measured at 6 K predicts the existence of a complex trap state at the Si-SiO2 interface within the bandgap. The suppressed drain current and comparable low electron mobility of the accumulation layer can be well described by the large Coulomb scattering arising from the presence of a large density of interface charged traps. The effects of charge trapping and the scattering at interface states become the main reasons for mobility reduction for electrons in the accumulation region.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126) and the National Basic Research Program of China (Grant No. 2010CB934104).
Corresponding Authors:
Han Wei-Hua, Yang Fu-Hua
E-mail: weihua@semi.ac.cn;fhyang@semi.ac.cn
Cite this article:
Ma Liu-Hong (马刘红), Han Wei-Hua (韩伟华), Wang Hao (王昊), Yang Xiang (杨香), Yang Fu-Hua (杨富华) Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors 2015 Chin. Phys. B 24 128101
[1]
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[2]
Lee C W, Nazarov A N, Ferain I, Akhavan N D, Yan R, Razavi P, Yu R, Doria R T and Colinge J P 2010 Appl. Phys. Lett. 96 102106
[3]
Ionescu A M 2010 Nat. Nanotechnol. 5 178
[4]
Colinge J P, Lee C W, Ferain I, Akhavan N D, Yan R, Razavi P, Yu R, Nazarov A N and Doria R T 2010 Appl. Phys. Lett. 96 073510
[5]
Colinge J P, Kranti A, Yan R, Lee C W, Ferain I, Yu R, Akhavan N D and Razavi P 2011 Solid-State Electron. 65-66 33
[6]
Arnold E and Alok D 2001 IEEE Trans. Electron Dev. 48 1870
[7]
Nakata Y, Okada T and Maeda M 2002 Appl. Phys. Lett. 81 4239
[8]
Zhang Y L, Chen Q D, Xia H and Sun H B 2010 Nanotoday 5 435
[9]
Borowiec A and Haugen H K 2003 Appl. Phys. Lett. 82 4462
[10]
Tanaka T, Sun H B and Kawata S 2002 Appl. Phys. Lett. 80 312
[11]
Kawata S, Sun H B, Tanaka T and Takada K 2001 Nature 412 697
[12]
Carvalho E J, Alves M A R, Braga E S and Cescato L 2006 Microelectron. J. 37 1265
[13]
Du Y, Cao H, Yan W, Han W, Liu Y, Dong X, Zhang Y, Jin F, Zhao Z and Yang F 2012 Appl. Phys. A 106 575
[14]
Ghibaudo G 1988 Electron. Lett. 24 543
[15]
Joo M K, Mouis M, Jeon D Y, Barraud S Park1 S J, Kim G T and Ghibaudo G 2014 Semicond. Sci. Technol. 29 045024
[16]
Trevisoli R D, Doria R T, de Souza M and Pavanello M A 2011 Semicond. Sci. Technol. 26 105009
[17]
Jeon D Y, Park S J, Mouis M, Joo M K, Barraud S, Kim G T and Ghibaudo G 2014 Appl. Phys. Lett. 104 263510
[18]
Salfi J, Paradiso N, Roddaro S, Heun S, Nair S V, Savelyev I G, Blumin M, Beltram F and Ruda H E 2011 ACS Nano 5 2191
[19]
Liu F, Wang K L, Li C and Zhou C 2006 IEEE Trans. Nanotechnol. 5 441
[20]
Poli S, Pala M G and Poiroux T 2009 IEEE Trans. Electron Dev. 56 1191
[21]
Jeon D Y, Park S, Mouis M, Berthomé M, Barraud S, Kim G T and Ghibaudo G 2013 Solid-State Electron. 90 86
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.