Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110505    DOI: 10.1088/1674-1056/24/11/110505
GENERAL Prev   Next  

Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords

Xie Qi (谢琪), Hu Bin (胡斌), Chen Ke-Fei (陈克非), Liu Wen-Hao (刘文浩), Tan Xiao (谭肖)
Hangzhou Key Laboratory of Cryptography and Network Security, Hangzhou Normal University, Hangzhou 311121, China
Abstract  In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password-based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well-organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency.
Keywords:  chaos      Chebyshev chaotic maps      anonymous      authenticated key exchange  
Received:  10 April 2015      Revised:  05 July 2015      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F02005), the Major State Basic Research Development Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61070153).
Corresponding Authors:  Xie Qi, Liu Wen-Hao     E-mail:  qixie68@126.com;whl819819@163.com

Cite this article: 

Xie Qi (谢琪), Hu Bin (胡斌), Chen Ke-Fei (陈克非), Liu Wen-Hao (刘文浩), Tan Xiao (谭肖) Chaotic maps and biometrics-based anonymous three-party authenticated key exchange protocol without using passwords 2015 Chin. Phys. B 24 110505

[1] He D J, Chen C, Ma M D, Chan S and Bu J J 2013 Int. J. Commun. Syst. 26 495
[2] Khan M K and Kumari S 2014 Secur. Commun. Netw. 7 399
[3] Mishra D, Das A K and Mukhopadhyay S 2014 Expert Syst. Appl. 41 8129
[4] Xie Q, Tan X, Wong D S, Wang G, Bao M and Dong N 2014 Secur. Commun. Netw. 7 1264
[5] He D, Chen J and Hu J 2012 J. Int. Technol. 13 405
[6] Özkaynak F and Yavuz S 2013 Nonlinear Dyn. 74 551
[7] Zhang L 2008 Chaos Soliton. Fract. 37 669
[8] Wang X Y and Liu L T 2013 Chin. Phys. B 22 050503
[9] Qi G Y and Sandra B M 2014 Chin. Phys. B 23 050507
[10] Deng S, Li Y and Xiao D 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1338
[11] Farash M S and Attari M A 2014 Nonlinear Dyn. 76 1203
[12] He D, Chen Y and Chen Y 2012 Nonlinear Dyn. 69 1149
[13] Tan Z 2013 Nonlinear Dyn. 72 311
[14] Xue K and Hong P 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 2969
[15] Lin H Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 482
[16] Yoon E and Jeon I 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2383
[17] Wang X and Zhao J 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 4052
[18] Lai H, Xiao J, Li L and Yang Y 2012 Math. Probl. Eng. 2012 454823
[19] Zhao F, Gong P, Li S, Li M and Li P 2013 Nonlinear Dyn. 74 419
[20] Lee C, Li C and Hsu C 2013 Nonlinear Dyn. 73 125
[21] Hu X X and Zhang Z F 2014 Nonlinear Dyn. 78 1293
[22] Xie Q, Hu B, Dong N and Wong D S 2014 PLoS ONE 9 e102747
[23] Xie Q, Zhao J and Yu X 2013 Nonlinear Dyn. 74 1021
[24] Lai H, Orgun M A, Xiao J H, Pieprzyk J, Xue L Y and Yang Y X 2014 Nonlinear Dyn. 77 1427
[25] Farash M S and Attari M A 2014 Nonlinear Dyn. 77 399
[26] Xie Q, Hu B and Wu T 2015 Nonlinear Dyn. 79 2345
[27] Shu J 2015 Chin. Phys. B 24 060509
[28] Lee C C, Li C T, Chiu S T and Lai Y M 2015 Nonlinear Dyn. 79 2485
[29] Li C T and Hwang M S 2010 J. Netw. Comput. Appl. 33 1
[30] Abadi M, Blanchet B and Lundh H C 2009 21st International Conference on Computer Aided Verification, June 26, 2009, Grenoble, France, pp. 35–49
[31] Abadi M and Fournet C Proceedings of the 28th ACM SIGPLANSIGACT Symposium on Principles of Programming Languages, 2001, New York, USA, p. 104
[32] Dolev D and Yao A C 1983 IEEE Tran. Inform. Theory 29 198
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[15] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
No Suggested Reading articles found!