INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing |
Z. Golsanamlou, M. Bagheri Tagani, H. Rahimpour Soleimani |
Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran |
|
|
Abstract The charge and spin-dependent thermoelectric properties of different lengths of polythiophene in a molecular junction are investigated using the Büttiker probe method within Green function formalism in linear response regime. The coupling of the molecular chain to three-dimensional ferromagnetic electrodes is described by a tight-binding model for both parallel and antiparallel spin configurations. The decrease of height of transmission probability peaks and thermoelectric coefficients are observed in the presence of the Büttiker probes. The reduction is more intensive in the strong dephased chains. Results show that the spin magnetothermopower is bigger than the charge magnetothermopower due to the larger difference between the spin thermopowers with respect to the charge ones. In addition, we observed that the kind of carriers participating in the thermoelectric transport depends on the number of the thiophene rings.
|
Received: 23 February 2015
Revised: 06 May 2015
Accepted manuscript online:
|
PACS:
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
75.76.+j
|
(Spin transport effects)
|
|
73.63.Rt
|
(Nanoscale contacts)
|
|
Corresponding Authors:
Z. Golsanamlou, H. Rahimpour Soleimani
E-mail: zahra.golsanamlou@gmail.com;rahimpour@guilan.ac.ir
|
Cite this article:
Z. Golsanamlou, M. Bagheri Tagani, H. Rahimpour Soleimani Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing 2015 Chin. Phys. B 24 108402
|
[1] |
Zhag Y, Zelinskyy Y and May V 2013 Phys. Rev. B 88 155426
|
[2] |
Wierzbinski E, Venkatramani R, Davis K L, Bezer S, J. Kong, Xing Y, Borguet E, Achim C, Beratan D N and Waldeck D H 2013 ACS Nano 7 5391
|
[3] |
Nozaki D, Gomes da Rocha C, Pastawski H M and Cuniberti G 2012 Phys. Rev. B 85 155327
|
[4] |
Lai W, Xing Y and Ma Z 2013 J. Phys.: Condens. Matter 25 205304
|
[5] |
Lai W, Zhang Ch and Ma Z 2015 Front. Phys. 10 59
|
[6] |
Büttiker M 1986 Phys. Rev. Lett. 57 1761
|
[7] |
DAmato J L and Pastawski H M 1990 Phys. Rev. B 41 7411
|
[8] |
Rejec T, Žitko R, Mravlje J and Ramšak A 2012 Phys. Rev. B 85 085117
|
[9] |
Andergassen S, Costi T A and ZlatićV 2011 Phys. Rev. B 84 241107
|
[10] |
Zheng J, Chi F and Guo Y 2012 J. Phys.: Condens. Matter 24 265301
|
[11] |
Bergfield J P, Solis M and Stafford C A 2010 ACS Nano 4 5314
|
[12] |
Wei J H, Liu X. J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
|
[13] |
Yakuphanoglu F, Liu H T and Xu J K 2007 J. Phys. Chem. B 111 7535
|
[14] |
Hiroshigo Y, Ookawa M and Toshima N 2007 Synthetic Metals 157 647
|
[15] |
Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A and Majumdar A 2009 Nano Lett. 9 1164
|
[16] |
Bubnova O, Berggren M and Crispin X 2012 J. Am. Chem. Soc. 134 16456
|
[17] |
Rittmeyer S P and GroßA 2012 Beilstein J. Nanotechnol. 3 909
|
[18] |
Gao X, Uehara K, Klug D D, Patchkovskii S, Tse J S and Tritt T M 2005 Phys. Rev. B 72 125202
|
[19] |
Fu J Y, Liu D S and Xie S J 2008 Physica E 40 915
|
[20] |
Lu B Y, Liu C C, Lu S, Xu J K, Jiang F K, Li Y Zh and Zhang Z 2010 Chin. Phys. Lett. 27 057201
|
[21] |
Wei J H, Liu X J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
|
[22] |
Pauly F, Viljas J K and Cuevas J C 2008 Phys. Rev. B 78 035315
|
[23] |
Popescue A and Haney P M 2012 Phys. Rev. B 86 155452
|
[24] |
Golizade-mojarrad R and Datta S 2007 Phys. Rev. B 75 081301
|
[25] |
Dutta P, Maiti S K and Karmakar S N 2010 Organic Electronics 11 1120
|
[26] |
Su W P, Schrieffer J R an Heeger A 1980 Phys. Rev. B 22 2099
|
[27] |
Datta S 2005 Quantum Transport: Atom to Transistor (Camberige: Cambridge University Press)
|
[28] |
Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
|
[29] |
Dey M, Maiti S K and Karmakar S N 2011 Organic Electronics 12 1017
|
[30] |
Kang Y M, Xie Z, An Zh, Li Y Ch and Chen N X 2003 J. Phys. Chem. Solids 64 377
|
[31] |
Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y 2007 Organic Electronics 8 487
|
[32] |
Hu G C, Wei J H and Xie S J 2007 Appl. Phys. Lett. 91 142115
|
[33] |
Xie S J, Mie L M and Lin D L 1994 Phys. Rev. B 50 13364
|
[34] |
Yoshihiro A and F. Hidetoshi 2005 Phys. Rev. B 72 085431
|
[35] |
Yaghobi M and Yuonesi M 2012 Mol. Phys. 110 49
|
[36] |
Zimbovskaya N A 2013 Transport Properties of Molecular Junctions (Berlin: Springer Tracts in Modern Physics, Springer)
|
[37] |
Ahmadi Fouladi A, Ketabi S A, Elahi S M and Sebt S A 2012 Eur. Phys. J. B 85 163
|
[38] |
Datta S 1997 Electronic transport in mesoscopic systems (Cambridge: Cambridge University Press)
|
[39] |
Trocha P and Barnas J 2012 Phys. Rev. B 85 085408
|
[40] |
Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
|
[41] |
Bagheri Tagani M and Rahimpour Soleimani H 2012 J. Appl. Phys. 112 103719
|
[42] |
Bagheri Tagani M and Rahimpour Soleimani H 2013 J. Appl. Phys. 113 143709
|
[43] |
Bagheri Tagani M and Rahimpour Soleimani H 2012 Solid State Commun. 152 914
|
[44] |
Golsanamlou Z, Izadi Vishkayi S, Bagheri Tagani M and H. Rahimpour Soleimani 2014 Chem. Phys. Lett. 594 51
|
[45] |
Zeng C, Li B, Wang, Wang H, Wang K, Yang J, Hou J G and Zhu Q 2002 J. Chem. Phys. 117 851
|
[46] |
Viljas J K, Pauly F and Cuevas J C 2008 Phys. Rev. B 77 155119
|
[47] |
Świrkowicz R, Wierzbicki M and BarnaśJ 2009 Phys. Rev. B 80 195409
|
[48] |
Golsanamlou Z, Bagheri Tagani M and Rahimpour Soleimani H 2014 Macromolecular Theory and Simulations 23 311
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|