Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104210    DOI: 10.1088/1674-1056/27/10/104210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of optical force density distribution inside subwavelength-diameter optical fibers

Yun-Yuan Zhang(张运原)1, Hua-Kang Yu(虞华康)1, Xiang-Ke Wang(王向珂)1, Wan-Ling Wu(吴婉玲)1, Fu-Xing Gu(谷付星)2, Zhi-Yuan Li(李志远)1
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China;
2 Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System(Ministry of Education), University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  

We investigate the microscopic optical force density distributions respectively inside a subwavelength-diameter (SD) fiber with flat endface and inside one with oblique endface by using a finite-difference time-domain (FDTD) method. Optical force density distributions at the fiber endfaces can now be readily available. The complete knowledge of optical force density distributions not only reveal features regarding the microscopic near-field optomechanical interaction, but also provide straightforward explanations for the sideway deflections and other mechanical motions. Our results can provide a useful reference for better understanding the mechanical influence when light transports in a microscale or nanoscale structure and for developing future highly-sensitive optomechanical devices.

Keywords:  subwavelength-diameter optical fibers      optical force  
Received:  14 June 2018      Revised:  06 July 2018      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Wg (Other fiber-optical devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604230 and 11434017), the Guangdong Provincial Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06C594), and the National Key Research and Development Program of China (Grant No. 2018YFA 0306200).

Corresponding Authors:  Hua-Kang Yu, Zhi-Yuan Li     E-mail:  hkyu@scut.edu.cn;phzyli@scut.edu.cn

Cite this article: 

Yun-Yuan Zhang(张运原), Hua-Kang Yu(虞华康), Xiang-Ke Wang(王向珂), Wan-Ling Wu(吴婉玲), Fu-Xing Gu(谷付星), Zhi-Yuan Li(李志远) Theoretical analysis of optical force density distribution inside subwavelength-diameter optical fibers 2018 Chin. Phys. B 27 104210

[1] Kippenberg T J and Vahala K J 2007 Opt. Express 15 17172
[2] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[3] Li M, Pernice W H, Xiong C, Baehr-Jones T, Hochberg M and Tang H X 2008 Nature 456 480
[4] Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Nature 462 78
[5] Nunnenkamp A, Borkje K and Girvin S M 2011 Phys. Rev. Lett. 107 063602
[6] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[7] Li J, Guo H and Li Z Y 2013 Photon. Res. 1 28
[8] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[9] Povinelli M L, Lončar M, Ibanescu M, Smythe E J, Johnson S G, Capasso F and Joannopoulos J D 2005 Opt. Lett. 30 3042
[10] Zhu X, Ling Y, Huang G S, Zhou H, Dai Y, Wu K and Gan Z 1998 Chin. Phys. L. 15 165
[11] Kippenberg T J, Rokhsari H, Carmon T, Scherer A and Vahala K J 2005 Phys. Rev. Lett. 95 033901
[12] Park Y S and Wang H 2009 Nat. Phys. 5 489
[13] Wiederhecker G, Chen L, Gondarenko A and Lipson M 2009 Nature 462 633
[14] Liu Y, Xiao Y, Luan X and Wong C W 2013 Phys. Rev. Lett. 110 153606
[15] Liu Y C, Xiao Y F, Chen Y L, Yu X C and Gong Q 2013 Phys. Rev. Lett. 111 083601
[16] Liao S, Min S C and Dong J J 2014 Chin. Phys. B 23 124211
[17] Lu X Y, Jing H, Ma J Y and Wu Y 2015 Phys. Rev. Lett. 114 253601
[18] Balram K C, Davanço M I, Song J D and Srinivasan K 2016 Nat. Photon. 10 346
[19] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657
[20] Yang D, Gao F, Cao Q T, Wang C, Ji Y and Xiao Y F 2018 Photon. Res. 6 99
[21] LizéY K, Mägi E C, Ta'eed V G, Bolger J A, Steinvurzel P and Eggleton B J 2004 Opt. Express 12 3209
[22] Eichenfield M, Camacho R, Chan J, Vahala K J and Painter O 2009 Nature 459 550
[23] Li M, Pernice W H, and Tang H X 2009 Nat. Nanotechnol. 4 377
[24] Li M, Pernice W and Tang H 2009 Nat. Photon. 3 464
[25] Yang X, Liu Y, Oulton R F, Yin X and Zhang X 2011 Nano Lett. 11 321
[26] Li Y and Hu Y J 2013 Chin. Phys. B 22 034206
[27] Van Laer R, Kuyken B, Van Thourhout D and Baets R 2015 Nat. Photon. 9 199
[28] Monifi F, Zhang J, Özdemir Ş Peng B, Liu Y, Bo F, Nori F and Yang L 2016 Nat. Photon. 10 399
[29] Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q and Qiu M 2017 Phys. Rev. Lett. 118 043601
[30] Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J, Shi Y, Villanueva J, Thamphiwatana S, Ma X, Zhang L, Chen S, Lal R and Sirbuly D J 2017 Nat. Photon. 11 352
[31] Ma K, Han S, Zhang L, Shi Y and Dai D 2017 Opt. Express 25 30876
[32] Yu X, Zhi Y, Tang S, Li B, Gong Q, Qiu C and Xiao F 2018 Light Sci. Appl. 7 18003
[33] Tang S, Liu S, Yu X, Song Q, Gong Q and Xiao F 2018 Adv. Mater. 30 1800262
[34] She W, Yu J and Feng R 2008 Phys. Rev. Lett. 101 243601
[35] Mansuripur M and Zakharian A 2009 Phys. Rev. A 80 023823
[36] Brevik I and Ellingsen S 2010 Phys. Rev. A 81 011806
[37] Yu H, Fang W, Gu F, Qiu M, Yang Z and Tong L 2011 Phys. Rev. A 83 053830
[38] Yu J, Chen C, Zhai Y, Chen Z, Zhang J, Wu L, Huang F and Xiao Y 2011 Opt. Express 19 25263
[39] Brevik I 2014 Phys. Rev. A 89 025802
[40] Xiao T, Yu H, Zhang Y and Li Z 2018 Opt. Express 26 6499
[41] Mansuripur M, Zakharian A R and Wright E M 2013 Phys. Rev. A 88 023826
[42] Bethune-Waddell M and Chau K J 2015 Rep. Prog. Phys. 78 122401
[43] Barnett S M and Loudon R 2006 J. Phys. B-At. Mol. Opt. Phys. 39 S671
[44] Ashkin A and Dziedzic J 1973 Phys. Rev. Lett. 30 139
[45] Le Kien F, Liang J, Hakuta K and Balykin V 2004 Opt. Commun. 242 445
[1] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[2] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[3] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[4] Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides
Jiahui Lu(卢佳慧), Guanghui Wang(王光辉). Chin. Phys. B, 2016, 25(11): 117804.
[5] Movement of a millimeter-sized oil drop pushed by optical force
Zhang Li (张莉), She Wei-Long (佘卫龙). Chin. Phys. B, 2015, 24(10): 104207.
[6] Exact results on cavity cooling in a system of a two-level atom and a cavity field
Zhang Yu-Qing(张玉青), Tan Lei(谭磊), Zhu Zhong-Hua(朱中华), and Liu Li-Wei(刘利伟). Chin. Phys. B, 2010, 19(3): 033202.
No Suggested Reading articles found!