Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104206    DOI: 10.1088/1674-1056/24/10/104206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photon pair source via two coupling single quantum emitters

Peng Yong-Gang (彭勇刚), Zheng Yu-Jun (郑雨军)
School of Physics, Shandong University, Jinan 250100, China
Abstract  

We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source.

Keywords:  coupling quantum emitters      photon source      photon statistics  
Received:  11 March 2015      Revised:  23 April 2015      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  33.80.-b (Photon interactions with molecules)  
  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.

Corresponding Authors:  Peng Yong-Gang, Zheng Yu-Jun     E-mail:  ygpeng@sdu.edu.cn;yzheng@sdu.edu.cn

Cite this article: 

Peng Yong-Gang (彭勇刚), Zheng Yu-Jun (郑雨军) Photon pair source via two coupling single quantum emitters 2015 Chin. Phys. B 24 104206

[1] Yuan Z, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102
[2] He Y, He Y, Wei Y, Wu D, Alature M, Schneider C, Hofling S, Kamp M, Lu C and Pan J 2013 Nat. Nanotechnol. 8 213
[3] Buckley S, Rivoire K and Vuckovic J 2012 Rep. Prog. Phys. 75 126503
[4] Stevenson R M, Young R J, Atkinson P, Cooper K, Ritchie D A and Shields A J 2006 Nature 439 179
[5] Nothaft M, Hohla S, Jelezko F, Fruhauf M, Pflaum J and Wrachtrup J 2011 Nat. Commun. 3 628
[6] Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H and Gisin N 2008 New J. Phys. 10 023027
[7] Zhang W, Ding D S, Pan J S and Shi B S 2014 Chin. Phys. Lett. 31 064208
[8] Wang M M, Quan R A, Tai Z Y, Hou F Y, Liu T, Zhang S G and Dong R F 2014 Acta Phys. Sin. 63 194206 (in Chinese)
[9] Wang J X 2014 Acta Phys. Sin. 63 184203 (in Chinese)
[10] Dousse A, Suffczynski J, Beveratos A, Krebs O, Lemaitre A, Sagnes I, Bloch J, Voisin P and Senellart P 2010 Nature 466 217
[11] Reina J H, Beausoleil R G, Spiller T P and Munro W J 2004 Phys. Rev. Lett. 93 250501
[12] Hettich C, Schmitt C, Zitzmann J, Kühn S, Gerhardt I and Sandoghdar V 2002 Science 298 385
[13] Akram U, Ficek Z and Swain S 2000 Phys. Rev. A 62 013413
[14] Varada G V and Agarwal G S 1992 Phys. Rev. A 45 6721
[15] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[16] Mukamel S 1995 Principles of Nonlinear Optical Spectroscopy (New York: Oxford University Press)
[17] Bel G, Zheng Y and Brown F L H 2006 J. Phys. Chem. B 110 19066
[18] Peng Y and Zheng Y 2008 Appl. Phys. Lett. 92 092120
[19] van KampenN G 2007 Stochastic Processes in Physics and Chemistry (Singapore: Elsevier)
[20] Martin B R 2012 Statistics for Physical Sciences, An Introduction (New York: Academic Press)
[21] Peng Y and Zheng Y 2010 Physica E 42 2420
[1] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[2] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[3] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[4] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[5] A new two-mode thermo-and squeezing-mixed optical field
Jun Zhou(周军), Hong-yi Fan(范洪义), Jun Song(宋军). Chin. Phys. B, 2017, 26(7): 070301.
[6] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[7] Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications
Qianqing Jiang(姜倩晴), Wuxia Li(李无瑕), Chengchun Tang(唐成春), Yanchun Chang(常彦春), Tingting Hao(郝婷婷), Xinyu Pan(潘新宇), Haitao Ye(叶海涛), Junjie Li(李俊杰), Changzhi Gu(顾长志). Chin. Phys. B, 2016, 25(11): 118105.
[8] Photon counting statistics in single multi-level quantum system
Wang Dong-Sheng(王东升) and Zheng Yu-Jun(郑雨军). Chin. Phys. B, 2010, 19(8): 083202.
[9] Practical non-orthogonal decoy state quantum key distribution with heralded single photon source
Mi Jing-Long(米景隆), Wang Fa-Qiang(王发强), Lin Qing-Qun(林青群), and Liang Rui-Sheng(梁瑞生) . Chin. Phys. B, 2008, 17(4): 1178-1183.
[10] Entanglement and photon statistics of output fields from beam splitter for binomial state inputs
Zhou Qing-Ping (周清平), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1477-1486.
[11] Photon statistics of the micromaser with a Kerr medium
Wu Shu-Dong (吴曙东), Zhan Zhi-Ming (詹志明), Jin Li-Xia (金丽霞). Chin. Phys. B, 2002, 11(12): 1272-1275.
No Suggested Reading articles found!