ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique |
Shuai Hu(胡帅)1,2, Taichang Gao(高太长)1,2, Hao Li(李浩)1, Lei Liu(刘磊)1, Ming Chen(陈鸣)1, Bo Yang(杨波)1,2 |
1 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101 China; 2 National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering, PLA University of Science and Technology, Nanjing 210007, China |
|
|
Abstract To improve the modeling accuracy of radiative transfer, the scattering properties of aerosol particles with irregular shapes and inhomogeneous compositions should be simulated accurately. To this end, a light-scattering model for nonspherical particles is established based on the pseudo-spectral time domain (PSTD) technique. In this model, the perfectly matched layer with auxiliary differential equation (ADE-PML), an excellent absorption boundary condition (ABC) in the finite difference time domain generalized for the PSTD, and the weighted total field/scattered field (TF/SF) technique is employed to introduce the incident light into 3D computational domain. To improve computational efficiency, the model is further parallelized using the OpenMP technique. The modeling accuracy of the PSTD scheme is validated against Lorenz-Mie, Aden-Kerker, T-matrix theory and DDA for spheres, inhomogeneous particles and nonspherical particles, and the influence of the spatial resolution and thickness of ADE-PML on the modeling accuracy is discussed as well. Finally, the parallel computational efficiency of the model is also analyzed. The results show that an excellent agreement is achieved between the results of PSTD and well-tested scattering models, where the simulation errors of extinction efficiencies are generally smaller than 1%, indicating the high accuracy of our model. Despite its low spatial resolution, reliable modeling precision can still be achieved by using the PSTD technique, especially for large particles. To suppress the electromagnetic wave reflected by the absorption layers, a six-layer ADE-PML should be set in the computational domain at least.
|
Received: 17 August 2017
Revised: 28 November 2017
Accepted manuscript online:
|
PACS:
|
42.68.Mj
|
(Scattering, polarization)
|
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
95.30.Jx
|
(Radiative transfer; scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.41575025 and 41575024). |
Corresponding Authors:
Taichang Gao
E-mail: 2009gaotc@gmail.com
|
Cite this article:
Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波) Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique 2018 Chin. Phys. B 27 054215
|
[13] |
Herman M, Deuzé J L, Marchand A, Roger B and Lallart P 2005 J. Geophys. Res. 110 D10S02
|
[1] |
Liou K N 2003 An Introduction to Atmospheric Radiation (San Diego:Academic Press)
|
[14] |
Hu S, Gao T, Li H, Yang B, Zhang F, Chen M and Liu L 2017 Opt. Express 25 1643
|
[2] |
Zhang F, Shi Y N, Li J, Wu K and Iwabuchi H 2017 J. Atmos. Sci. 74 419
|
[15] |
Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons, Inc.)
|
[3] |
Rao R 2012 Modern Optics (Beijing:Scientific Express)
|
[16] |
Zhao J Q and Hu Y Q 2003 Appl. Opt. 42 4937
|
[4] |
Sun W, Videen G, Fu Q and Hu Y 2013 J. Quant. Spectrosc. Radiat. Trans. 131 166
|
[17] |
Zhao J Q, Shi G, Chen H and Cheng G 2006 Adv. Atmos. Sci. 23 802
|
[5] |
Mishchenko M I and Travis L D 1997 J. Geophys. Res. 102 16989
|
[18] |
Yang P, Liou K N, Bi L, Liu C, Yi B and Baum B A 2015 Adv. Atmos. Sci. 32 32
|
[6] |
Dubovik O, Sinyuk A, Lapyonok T, Holben B N, Mishchenko M, Yang P, Eck T F, Volten H, Munoz O, Veihelmann B, Zande W J v d, Leon J F, Sorokin M and Slutsker I 2006 J. Geophys. Res. 111 D11208
|
[19] |
Mishchenko M I and Travis L D 1998 J. Quant. Spectrosc. Radiat. Trans. 60 309
|
[7] |
Hu S, Gao T, Li H, Liu L, Liu X C, Zhang T, Cheng T J, LiWT, Dai Z H and Su X J 2016 J. Geophys. Res.:Atmospheres 121
|
[20] |
Mishchenko M I and Travis L D 1994 Opt. Comm. 109 16
|
[8] |
Mishchenko M I, Hovenier J W and Travis L D 2000 Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application (New York:Academic Press)
|
[21] |
Voshchinnikov N V and Farafonov V G 1993 Astrophysics & Space Science 204 19
|
[9] |
Cheng T H, Gu X F, Yu T L and Tian G 2010 J. Quant. Spectrosc. Radiat. Trans. 111 895
|
[22] |
Al-Rizzo H M and Tranquilla J M 1995 J. Comput. Phys. 119 356
|
[10] |
Curtis D B, Meland B and Aycibin M 2008 J. Geophys. Res. 113 D08210
|
[23] |
Liu L, Mishchenko M I and Cairns B 2006 J. Quant. Spectrosc. Radiat. Trans. 101 488
|
[11] |
Han Y, Rao R Z, Wang Y J and Lü D 2012 Infrared and Laser Engineering 41 3050(in Chinese)
|
[24] |
Quirantes A 2005 J. Quant. Spectrosc. Radiat. Trans. 92 373
|
[12] |
Han Y, Rao R, Wang Y and Lu D 2012 Infrared and Laser Engineering 41 3051
|
[25] |
Bi L, Yang P, Kattawar G W and Mishchenko M I 2013 J. Quant. Spectrosc. Radiat. Trans. 123 17
|
[13] |
Herman M, Deuzé J L, Marchand A, Roger B and Lallart P 2005 J. Geophys. Res. 110 D10S02
|
[26] |
Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)
|
[14] |
Hu S, Gao T, Li H, Yang B, Zhang F, Chen M and Liu L 2017 Opt. Express 25 1643
|
[27] |
Draine B T 1988 Astrophysical Journal 333 848
|
[15] |
Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons, Inc.)
|
[16] |
Zhao J Q and Hu Y Q 2003 Appl. Opt. 42 4937
|
[28] |
Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
|
[17] |
Zhao J Q, Shi G, Chen H and Cheng G 2006 Adv. Atmos. Sci. 23 802
|
[29] |
Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Trans. 106 558
|
[30] |
Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
|
[18] |
Yang P, Liou K N, Bi L, Liu C, Yi B and Baum B A 2015 Adv. Atmos. Sci. 32 32
|
[31] |
Yang P and Liou K N 1995 J. Opt. Soc. Am. A 12 162
|
[19] |
Mishchenko M I and Travis L D 1998 J. Quant. Spectrosc. Radiat. Trans. 60 309
|
[32] |
Hu S, Gao T, Li H, Chen M, Zhang F and Yang B 2017 Opt. Express 25 17872
|
[20] |
Mishchenko M I and Travis L D 1994 Opt. Comm. 109 16
|
[33] |
Liu C, Panetta R L and Yang P 2012 J. Quant. Spectrosc. Radiat. Trans. 113 1728
|
[21] |
Voshchinnikov N V and Farafonov V G 1993 Astrophysics & Space Science 204 19
|
[22] |
Al-Rizzo H M and Tranquilla J M 1995 J. Comput. Phys. 119 356
|
[34] |
Liu Q H 1997 Micro Opt. Tech. Lett. 15 158
|
[23] |
Liu L, Mishchenko M I and Cairns B 2006 J. Quant. Spectrosc. Radiat. Trans. 101 488
|
[35] |
Hu S, Gao T, Li H, Yang B, Jiang Z, Liu L and Chen M 2017 J. Quant. Spectrosc. Radiat. Trans. 200 1
|
[36] |
Gao X, Mirotznik M S and Prather D 2004 IEEE Trans. Antennas. Propag. 52 1665
|
[24] |
Quirantes A 2005 J. Quant. Spectrosc. Radiat. Trans. 92 373
|
[25] |
Bi L, Yang P, Kattawar G W and Mishchenko M I 2013 J. Quant. Spectrosc. Radiat. Trans. 123 17
|
[37] |
Liu Y, Chen Y and Zhang P 2013 Progress in Electromagnetics Research 143 223
|
[26] |
Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)
|
[38] |
Liu C, Bi L, Panetta R L, Yang P and Yurkin M A 2012 Opt. Express 20 16763
|
[27] |
Draine B T 1988 Astrophysical Journal 333 848
|
[28] |
Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
|
[29] |
Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Trans. 106 558
|
[30] |
Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
|
[31] |
Yang P and Liou K N 1995 J. Opt. Soc. Am. A 12 162
|
[32] |
Hu S, Gao T, Li H, Chen M, Zhang F and Yang B 2017 Opt. Express 25 17872
|
[33] |
Liu C, Panetta R L and Yang P 2012 J. Quant. Spectrosc. Radiat. Trans. 113 1728
|
[34] |
Liu Q H 1997 Micro Opt. Tech. Lett. 15 158
|
[35] |
Hu S, Gao T, Li H, Yang B, Jiang Z, Liu L and Chen M 2017 J. Quant. Spectrosc. Radiat. Trans. 200 1
|
[36] |
Gao X, Mirotznik M S and Prather D 2004 IEEE Trans. Antennas. Propag. 52 1665
|
[37] |
Liu Y, Chen Y and Zhang P 2013 Progress in Electromagnetics Research 143 223
|
[38] |
Liu C, Bi L, Panetta R L, Yang P and Yurkin M A 2012 Opt. Express 20 16763
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|