Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074207    DOI: 10.1088/1674-1056/20/7/074207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An optical rotation sensor based on dispersive slow-light medium

Wang Nan(王楠)a)b), Zhang Yun-Dong(掌蕴东) a)†, and Yuan Ping(袁萍)a)
Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080, China; b Engineering Research Center of Optoelectronic Materials & Devices, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Abstract  Slow light supported by electromagnetically induced transparency effect in dispersive medium is extremely susceptible with respect to Doppler detuning. In this paper, the Doppler effect induced by rotating dispersive medium was considered and the effect of the velocity of rotating dispersive medium on the group velocity was studied. Based on a dispersive slow-light medium, a high sensitive optical rotation sensor for measuring absolute rotation is proposed and analysed. The sensitivity of the rotation sensor is the group delay between the counterpropagationed wave packets in the device, and scales directly with square of the group index which can reach 102—108 orders of magnitude by selecting a proper dispersive medium.
Keywords:  slow light      dispersive medium      absolute rotation      group delay  
Received:  26 November 2010      Revised:  17 January 2011      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  

Cite this article: 

Wang Nan(王楠), Zhang Yun-Dong(掌蕴东), and Yuan Ping(袁萍) An optical rotation sensor based on dispersive slow-light medium 2011 Chin. Phys. B 20 074207

[1] Smith D D, Chang H, Fuller K A, Rosenberger A T and Boyd R W 2004 Phys. Rev. A 69 063804
[2] Naweed A, Farca G, Shopova S I and Rosenberger A T 2005 Phys. Rev. A 71 043804
[3] Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S and Lipson M 2006 Phys. Rev. Lett. 96 123901
[4] Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98 213904
[5] Chamorro-Posada P and Fraile-Pelaez F J 2009 Opt. Lett. 34 626
[6] Tian K, Arora W, Takahashi S, Hong J and Barbastathis G 2009 Phys. Rev. B 80 134305
[7] Corcoran B, Monat C, Pudo D, Eggleton B J, Krauss T F, Moss D J, Faolain L O, Pelusi M and White T P 2010 Opt. Lett. 35 1073
[8] Wang N, Zhang Y D and Wang J F 2009 Acta Phys. Sin. 58 7208 (in Chinese)
[9] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[10] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[11] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Scully M O 1999 Phys. Rev. Lett. 82 5229
[12] Hahn J and Ham B S 2008 Opt. Express 16 16723
[13] Turukhin A V, Sudarshanam V S and Shahriar M S 2002 Phys. Rev. Lett. 88 023602
[14] Qian J, Zhang H F and Gao J Y 2004 J. Opt. Soc. Am. B 21 1364
[15] Baldit E, Bencheikh K, Monnier P, Levenson J A and Rouget V 2005 Phys. Rev. Lett. 95 143601
[16] Podivilov E, Sturman B, Shumelyuk A and Odoulov S 2003 Phys. Rev. Lett. 91 083902
[17] Shumelyuk A, Shcherbin K, Odoulov S, Sturman B, Podivilov E and Buse K 2004 Phys. Rev. Lett. 93 243604
[18] Tseng H Y, Huang J and Adibi A 2006 Appl. Phys. B 85 493
[19] Scheuer J and Yariv A 2006 Phys. Rev. Lett. 96 53901
[20] Peng C, Li Z and Xu A 2007 Opt. Express 15 3864
[21] Peng C, Li Z and Xu A 2007 Appl. Opt. 46 4125
[22] Zhang Y D, Wang N, Tian H, Wang H, Qiu W, Wang J F and Yuan P 2008 Phys. Lett. A 372 5848
[23] Leonhardt U and Piwnicki P 2000 Phys. Rev. A 62 055801
[24] Malykin G B 2000 Physics-Uspekhi 43 1325
[25] Shahriar M S, Pati G S, Tripathi R, Gopal V, Messall M and Salit K 2007 Phys. Rev. A 75 053807
[26] Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F and Yuan P 2010 Chin. Phys. B 19 014216
[27] Fiur'avsek J, Leonhardt U and Parentani R 2001 Phys. Rev. A 65 011802
[28] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[29] Milonni P W 2005 Fast Light, Slow Light and Left-Handed Light (Los Alamos: New Mexico Institute of Physics Publishing) p. 136
[1] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[2] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[3] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[4] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[5] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[6] Broadrange tunable slow and fast light in quantum dot photonic crystal structure
Alireza Lotfian, Reza Yadipour, Hamed Baghban. Chin. Phys. B, 2017, 26(12): 124207.
[7] Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating
Shu-Lin Wang(王书林), Lan Ding(丁岚), Wen Xu(徐文). Chin. Phys. B, 2017, 26(1): 017301.
[8] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[9] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[10] Time-domain nature of group delay
Wang Jian-Wu (王建武), Feng Zheng-He (冯正和). Chin. Phys. B, 2015, 24(10): 100301.
[11] Ghost imaging with broad distance
Duan De-Yang (段德洋), Zhang Lu (张路), Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(10): 104203.
[12] Controllable beating signal using stored light pulse
Wang Lei (王磊), Yang Qing-Yu (杨庆禹), Wang Xiao-Xiao (王潇潇), Luo Meng-Xi (罗梦希), Fan Yun-Fei (范云飞), Kang Zhi-Hui (康智慧), Dai Tian-Yuan (戴天缘), Bi Sheng (毕升), Wang Hai-Hua (王海华), Wu Jin-Hui (吴金辉), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2014, 23(1): 014205.
[13] Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies
Chen Lin (陈林), Zhang Tian (张天), Li Xun. Chin. Phys. B, 2013, 22(7): 077301.
[14] Low group velocity in a photonic crystal coupled-cavity waveguide
Zhang Chang-Xin(张昌莘) and Xu Xing-Sheng(许兴胜) . Chin. Phys. B, 2012, 21(4): 044213.
[15] Generation and storage of double slow light pulses in a solid
Fan Yun-Fei(范云飞), Wang Hai-Hua(王海华), Wang Rong(王荣), Zhang Xiao-Jun(张晓军), Kang Zhi-Hui(康智慧), Wu Jin-Hui(吴金辉), Zhang Han-Zhuang(张汉壮), and Gao Jin-Yue(高锦岳). Chin. Phys. B, 2012, 21(2): 024205.
No Suggested Reading articles found!