Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094203    DOI: 10.1088/1674-1056/24/9/094203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence

Zhou Ji (周吉), He Zhi-Hong (贺志宏), Ma Yu (马宇), Dong Shi-Kui (董士奎)
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  

We study the Gaussian laser transmission in lithium niobate crystal (LiNbO3) by using the finite element method to solve the electromagnetic field's frequency domain equation and energy equation. The heat generated is identified by calculating the transmission loss of the electromagnetic wave in the birefringence crystal, and the calculated value of the heat generated is substituted into the energy equation. The electromagnetic wave's energy losses induced by its multiple refractions and reflections along with the resulting physical property changes of the lithium niobate crystal are considered. Influences of ambient temperature and heat transfer coefficient on refraction and walk-off angles of O-ray and E-ray in the cases of different incident powers and crystal thicknesses are analyzed. The E-ray electrical modulation instances, in which the polarized light waveform is adjusted to the rated condition via an applied electrical field in the cases of different ambient temperatures and heat transfer coefficients, are provided to conclude that there is a correlation between ambient temperature and applied electrical field intensity and a correlation between surface heat transfer coefficient and applied electrical field intensity. The applicable electrical modulation ranges without crystal breakdown are proposed. The study shows that the electrical field-adjustable heat transfer coefficient range becomes narrow as the incident power decreases and wide as the crystal thickness increases. In addition, it is pointed out that controlling the ambient temperature is easier than controlling the heat transfer coefficient. The results of the present study can be used as a quantitative theoretical basis for removing the adverse effects induced by thermal deposition due to linear laser absorption in the crystal, such as depolarization or wave front distortion, and indicate the feasibility of adjusting the refractive index in the window area by changing the heat transfer boundary conditions in a wide-spectrum laser.

Keywords:  birefringence      electro-optic modulators      thermo-optic effects  
Received:  09 December 2014      Revised:  21 March 2015      Accepted manuscript online: 
PACS:  42.25.Lc (Birefringence)  
  78.20.Jq (Electro-optical effects)  
  78.20.nb (Photothermal effects)  
  42.79.Hp (Optical processors, correlators, and modulators)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51176039).

Corresponding Authors:  Zhou Ji, Dong Shi-Kui     E-mail:  zhouji174@163.com;dongsk@hit.edu.cn

Cite this article: 

Zhou Ji (周吉), He Zhi-Hong (贺志宏), Ma Yu (马宇), Dong Shi-Kui (董士奎) Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence 2015 Chin. Phys. B 24 094203

[1] Liu Z Y, Wu C, Tse M L V, Lu C and Tam H Y 2013 Opt. Lett. 38 1385
[2] Liu Z Y, Wu C, Tse M L V and Tam H Y 2014 J. Lightw. Technol. 32 2113
[3] Wu Y and Tan Y D 2013 Chin. Phys. Lett. 30 014201
[4] Zhang J, Yu J L, Cheng S Y, Lai Y F and Chen Y H 2014 Chin. Phys. B 23 027304
[5] Graupeter T and Pflaum C 2014 Proc. SPIE, Solid State Lasers XXIII:Technology and Devices 8959 89591S
[6] Terui Y and Ando S 2014 J. Appl. Phys. 116 053524
[7] van Stevendall U, Buse K, Malz H, Veenhuis H and Kratzig E 1998 J. Opt. Soc. 15 2868
[8] Zhou J, He Z H, Li H, Zhao L L and Dong S K 2014 J. Eng. Therm. Phys. 35 1633 (in Chinese)
[9] Zhou J, He Z H, Ma Y and Dong S K 2014 Appl. Opt. 53 6243
[10] Yang S T, Matthews M J, Elhadj S, Cooker D, Guss G M, Draggoo V G and Wegner P J 2010 Appl. Opt. 49 2606
[11] Sadat H, Wang C A and Le Dez V 2012 Appl. Math. Comput. 20 10211
[12] Sakurai A, Mishra S C and Maruyama S 2010 Numer. Heat Tr. A-Appl. 57 346
[13] Sadooghi P 2005 J. Quant. Spectrosc. Radiat. Transfer 92 403
[14] Hernandez-Rodriguez C, Fragoso-Lopez A B, Herreros-Cedres J and Guerrero-Lemus R 2014 J. Appl. Crystallogr. 47 566
[15] Ma P, Song N F, Jin J, Song J M and Xu X B 2012 Opt. Laser Technol. 44 1829
[16] Wu T S, Wang L, Wang Z and Hu S Y 2011 Proc. SPIE, Optical Sensors and Biophotonic III 8311 831126
[17] Jason J, Rugeland P, Tarasenko O, Margulis W and Nilsson H E 2013 Appl. Opt. 52 5208
[18] Zhao H, Chen M and Li G 2012 Chin. Phys. B 21 068404
[19] Adamiv V T 2008 Tech. Phys. Lett. 34 812
[20] Kim D H and Kang J U 2007 Opt. Eng. 46 075003
[21] Wang Z P, Li Q B and Wu Q 2007 Opt. Laser Technol. 39 8
[22] Baugher B and Goldstein J 2003 Opt. Mater. 23 519
[23] Jundt D H 1997 Opt. Lett. 22 1553
[24] Hobden M V and Warner J 1966 Phys. Lett. 22 243
[25] Jundt D H, Fejer M M and Byer R L 1990 J. Quantum. Elect. 26 135
[26] Schemmp E, Peterson G E and Carruthers J R 1970 J. Chem. Phys. 53 306
[27] Bordui P F, Norwood R G, Bird C D and Calvert G D 1991 J. Cryst. Growth 113 61
[28] Kovetz A 1990 The Principles of Electromagnetic Theory (London: Cambridge University Press) p. 155
[29] Yariv A and Yeh P 1984 Optical Wave in Crystals: Propagation and Control of Laser Radiation (Michigan: Wiley-Interscience) p. 142
[30] Dmitriev V G, Gurzadyan G G and Nikogosyan D N 2009 Handbook of Nonlinear Optical Crystals (Berlin: Springer) p. 119
[1] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[2] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[3] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[4] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[5] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[6] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[7] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[8] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[9] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[10] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[11] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
[12] Drift effect on vacuum birefringence in a strong electric and magnetic field
Huang Yong-Sheng (黄永盛), Wang Nai-Yan (王乃彦), Tang Xiu-Zhang (汤秀章). Chin. Phys. B, 2015, 24(3): 034201.
[13] Design on a highly birefringent and nonlinear photonic crystal fiber in the C waveband
Li Duan-Ming (李端明), Zhou Gui-Yao (周桂耀), Xia Chang-Ming (夏长明), Wang Chao (王超), Yuan Jin-Hui (苑金辉). Chin. Phys. B, 2014, 23(4): 044209.
[14] Investigation of the mode splitting induced by electro-optic birefringence in a vertical-cavity surface-emitting laser by polarized electroluminescence
Zhang Jie (章杰), Yu Jin-Ling (俞金玲), Cheng Shu-Ying (程树英), Lai Yun-Feng (赖云锋), Chen Yong-Hai (陈涌海). Chin. Phys. B, 2014, 23(2): 027304.
[15] Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique
Wang Bin (王斌), Qi Hong-Ji (齐红基), Sun Wei (孙卫), He Jun (何骏), Zhao Jiao-Ling (赵娇玲), Wang Hu (王虎), Hou Yong-Qiang (侯永强). Chin. Phys. B, 2014, 23(11): 117801.
No Suggested Reading articles found!