Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094302    DOI: 10.1088/1674-1056/24/9/094302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mechanical properties of GaxIn1-xAsyP1-y/GaAs systemat different temperatures and pressures

A. R. Degheidy, E. B. Elkenany
Department of Physics, Faculty of Science, Mansoura University, Mansoura, Egypt
Abstract  The mechanical properties, such as the elastic constants C11, C12, C44, and bulk, Young's, and shear moduli, of a GaxIn1-xAsyP1-y alloy lattice matching to a GaAs substrate are calculated for various As concentrations. The calculations are based on the pseudo-potential method within the virtual crystal approximation containing the effective disorder potential. The variations of the studied properties with pressure and temperature are investigated. A comparison between the calculated results and the available published data for binary parent compounds shows that they have good agreement, while the calculated results for the quaternary alloys at various temperature and pressure may be taken as a reference.
Keywords:  elastic constants      temperature and pressure      electronic band gaps  
Received:  25 January 2015      Revised:  15 March 2015      Accepted manuscript online: 
PACS:  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
  81.40.Vw (Pressure treatment)  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  42.70.Qs (Photonic bandgap materials)  
Corresponding Authors:  E. B. Elkenany     E-mail:  kena@mans.edu.eg

Cite this article: 

A. R. Degheidy, E. B. Elkenany Mechanical properties of GaxIn1-xAsyP1-y/GaAs systemat different temperatures and pressures 2015 Chin. Phys. B 24 094302

[1] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[2] Ghebouli M A, Ghebouli B and Fatmi M 2011 Physica B 406 1837
[3] Ghebouli B, Ghebouli M A and Fatmi M 2011 Physica B 406 2521
[4] Shimomura H, Anan T and Sugou S 1996 J. Cryst. Growth 162 121
[5] Elabsy A M and Elkenany E B 2010 Physica B 405 266
[6] Elabsy A M, Degheidy A R, Abdelwahed H G and Elkenany E B 2010 Physica B 405 3709
[7] Degheidy A R and Elkenany E B 2011 Semiconductors 45 10
[8] Elabsy A M 2011 Advances in Condensed Matter and Material Research 75
[9] Degheidy A R, Elabsy A M, Abdelwahed H G and Elkenany E B 2012 Indian J. Phys. 86 363
[10] Degheidy A R and Elkenany E B 2012 The African Review of Physics 7 0014
[11] Degheidy A R, Elabsy A M and Elkenany E B 2012 Superlattices and Microstructures 52 336
[12] Degheidy A R and Elkenany E B 2012 Mat. Sci in Semiconductor Processing 15 505
[13] Degheidy A R and Elkenany E B 2012 Chin. Phys. B 21 12
[14] Degheidy A R and Elkenany E B 2013 Materials Chemistry and Physics 143 1
[15] Degheidy A R and Elkenany E B 2013 Semiconductors 47 1283
[16] Degheidy A R, Sayed A and Elkenany E B 2013 J. Alloy. Compd. 574 580
[17] Degheidy A R and Elkenany E B 2013 Thin Solid Films 539 365
[18] Degheidy A R and Elkenany E B 2011 Proceedings of the 8th Conference on Nuclear and Particle Physics, November 20-24, 2011 Hurghada, Egypt
[19] Samara G A 1983 Phys. Rev. B 27 3494
[20] Welber B, Cardona M, Kim C K and Rodriguez S 1975 Phys. Rev. B 12 5729
[21] Adachi S 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: Wiley)
[22] Peter Y U and Cardona M 2010 Fundamentals of Semiconductors (4th Edn.) (Berlin: Springer)
[23] Piprek J 2003 Semiconductor Optoelectronic Devices (New York: Academic Press)
[24] Lee H J, Juravel L V and Woolley J C 1980 Phys. Rev. B 21 659
[25] Varshni Y P 1967 Physica 34 149
[26] Adachi S 1992 Physical Properties of III-V Semiconductor Compounds: InP, InAs,GaAs, GaP, InGaAs, and InGaAsP (New York: Wiley)
[27] Boucenna M and Bouarissa N 2004 Mater. Chem. Phys. 84 375
[28] Muller H, Trommer R, Cardona M and Vogl P 1980 Phys. Rev. B 21 4879
[29] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[30] Vegard L Z 1921 Physics 5 17
[31] Vogl P 1978 J. Phys. C 11 251
[32] Baranowski J M 1984 J. Phys. C 17 6287
[33] Bouarissa N 2003 Materials Science and Engineering B 100 280
[34] Harrison W A 1980 Electronic Structure and the Properties of Solids (New York: Freeman)
[35] Shen S G 1994 J. Phys.: Condens. Matter 6 8733
[36] Bouarissa N and Kassali K 2004 Superlattices and Microstructures 35 115
[37] Bouarissa N and Bachiri R 2002 Physica B 322 193
[38] Saib S and Bouarissa N 2006 Solid State Electron. 50 763
[39] Levinshtein M, Rumyantsev S and Shur M 1999 Handbook Series on Semiconductor Parameters 2 (Singapore: World Scientific)
[1] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[2] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
[3] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[4] First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥). Chin. Phys. B, 2018, 27(1): 016201.
[5] Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)
Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军). Chin. Phys. B, 2018, 27(1): 017103.
[6] First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound
Belmorsli Bekki, Kadda Amara, Mohammed El Keurti. Chin. Phys. B, 2017, 26(7): 076201.
[7] First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2
Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六). Chin. Phys. B, 2017, 26(6): 067103.
[8] Effects of pressure on structural, electronic, and mechanical properties of α, β, and γ uranium
Hui-Jie Zhang(张慧杰), Shi-Na Li(李世娜), Jing-Jing Zheng(郑晶晶), Wei-Dong Li(李卫东), Bao-Tian Wang(王保田). Chin. Phys. B, 2017, 26(6): 066104.
[9] Accurate calculations of the high-pressure elastic constants based on the first-principles
Wang Chen-Ju (王臣菊), Gu Jian-Bing (顾建兵), Kuang Xiao-Yu (邝小渝), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2015, 24(8): 086201.
[10] Solvation of halogen ions in aqueous solutions at 500 K-600 K under 100 atm
Shen Hao (申昊), Hao Ting (郝亭), Zhang Feng-Shou (张丰收). Chin. Phys. B, 2015, 24(12): 123601.
[11] Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure
Zhang Wei (张伟), Chen Qing-Yun (陈青云), Zeng Zhao-Yi (曾召益), Cai Ling-Cang (蔡灵仓). Chin. Phys. B, 2015, 24(10): 107101.
[12] Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations
Liu Qi-Jun (刘其军), Zhang Ning-Chao (张宁超), Liu Fu-Sheng (刘福生), Liu Zheng-Tang (刘正堂). Chin. Phys. B, 2014, 23(4): 047101.
[13] Elastic and thermodynamic properties of vanadium nitride under pressure and the effect of metallic bonding on its hardness
Pu Chun-Ying (濮春英), Zhou Da-Wei (周大伟), Bao Dai-Xiao (包代小), Lu Cheng (卢成), Jin Xi-Lian (靳希联), Su Tai-Chao (宿太超), Zhang Fei-Wu (张飞武). Chin. Phys. B, 2014, 23(2): 026201.
[14] First-principles investigation on the structural and elastic properties of cubic-Fe2 TiAl under high pressures
Liu Xian-Kun (刘显坤), Liu Cong (刘聪), Zheng Zhou (郑洲), Lan Xiao-Hua (兰晓华). Chin. Phys. B, 2013, 22(8): 087102.
[15] Ab initio calculations of the elastic, electronic, optical, and vibrational properties of PdGa compound under pressure
H. Koc, A. Yildirim, E. Deligoz. Chin. Phys. B, 2012, 21(9): 097102.
No Suggested Reading articles found!