Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080401    DOI: 10.1088/1674-1056/24/8/080401
GENERAL Prev   Next  

The stability of Majorana fermion in correlated quantum wire

Zhang De-Ping (张德平), Tian Guang-Shan (田光善)
School of Physics, Peking University, Beijing 100871, China
Abstract  

In this paper, we investigate the effect of the Coulomb interaction between electrons on the stability of Majorana fermion in a heterostructure of s-wave superconductor and quantum wire. In particular, by using the bosonization method and the renormalization group technique, we show that interplay between the so-called umklapp electron–electron scattering process and the superconducting proximity effect plays an extremely important role in determining the phase diagram of the system. We find that, at half-filling, the strong umklapp scattering process suppresses not only the superconducting pairing interaction and hence, destabilizes Majorana fermion in the quantum wire, but aslo results in a Mott insulating state. However, if the proximity effect is sufficiently strong, the topological superconducting phase can still survive and support Majorana fermion in the heterostructure. Furthermore, the existence of a critical Luttinger liquid phase is also found in a narrow region of parameters.

Keywords:  Majorana fermion      proximity effects      p-wave pairing heterostructure  
Received:  17 September 2014      Revised:  11 February 2015      Accepted manuscript online: 
PACS:  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374017).

Corresponding Authors:  Tian Guang-Shan     E-mail:  tiangs@pku.edu.cn

Cite this article: 

Zhang De-Ping (张德平), Tian Guang-Shan (田光善) The stability of Majorana fermion in correlated quantum wire 2015 Chin. Phys. B 24 080401

[1] Majorana E 1937 Nuovo Cimento 14 171
[2] Abrikosov A A, Gorkov L P and Dzyaloshinski I E 1963 Methods of Quantum Field Theory in Statistical Physics (New York: Dover Publications)
[3] Ivanov D A Phys. Rev. Lett. 2001 86 268
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and S C Zhang 2011 Rev. Mod. Phys. 83 1057
[6] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[7] Abrikosov A A 1988 Fundamentals of the Theory of Metals (Amsterdam: North-Holland) p. 483
[8] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[9] Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
[10] Sau J D and Tewari S 2013 Phys. Rev. B 88 054503
[11] Klinovaja J, Gangadharaiah S and Loss D 2012 Phys. Rev. Lett. 108 196804
[12] Klinovaja J, Ferreira G J and Loss D 2012 Phys. Rev. B 86 235416
[13] Nadj-Perge S, Drozdov I K, Bernevig B A and Yazdani A 2013 Phys. Rev. B 88 020407
[14] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[15] Sau J D, Tewari S, Lutchyn R M, Stanescu T D and Das Sarma S 2010 Phys. Rev. B 82 214509
[16] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[17] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[18] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[19] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[20] Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
[21] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[22] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[23] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406
[24] Lieb E and Mattis D 1965 Math. Phys. 6 304
[25] Giamarchi T 2004 Quantum Physics in One Dimension (Oxford: Oxford University Press)
[26] Lutchyn R M and Fisher M P A 2011 Phys. Rev. B 84 214528
[27] Gangadharaiah S, Braunecker B, Simon P and Loss D 2011 Phys. Rev. Lett. 107 036801
[28] Sela E, Altland A and Rosch A 2011 Phys. Rev. B 84 085114
[29] Stoudenmire E M, Alicea J, Starykh O A and Fisher M P A 2011 Phys. Rev. B 84 014503
[30] Gogolin A O, Nersesyan A A and Tsvelik A M 1998 Bosonization and Strongly Correlated Systems (Cambridge: Cambridge University Press)
[31] Kitaev A Y 2001 Phys. Usp. 44 131
[32] Amit D J 1984 Field Theory, the Renormalization Group and Critical Phenomena (Singpore: World Scientific)
[33] Fradkin E 2013 Field Theories of Condensed Matter Physics (Cambridge: Cambridge University Press)
[34] Anderson P W 1984 Basic Notions of Condensed Matter Physics (California: Benjamin Cummings)
[35] Shi D, Wen R, Liu G H and Tian G S 2010 Chin. Phys. B 19 077503
[36] Wen R, Liu G H and Tian G S 2011 Commun. Theor. Phys. 55 1102
[37] He P S, Oh S J, Chen Y and Tian G S 2010 Commun. Theor. Phys. 54 897
[1] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[2] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[3] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[4] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[5] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
[6] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[7] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[8] Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2018, 27(2): 027402.
[9] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[10] Majorana fermion realization and relevant transport processes in a triple-quantum dot system
Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强). Chin. Phys. B, 2015, 24(3): 037302.
[11] Detection of Majorana fermions in an Aharonov-Bohm interferometer
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根). Chin. Phys. B, 2014, 23(5): 057201.
[12] All-electrically reading out and initializing topological qubits with quantum dots
Chen Wei (陈伟), Xue Zheng-Yuan (薛正远), Wang Z. D.(汪子丹) , Shen Rui (沈瑞). Chin. Phys. B, 2014, 23(3): 030309.
[13] Coexistence of ferromagnetism and superconductivity in normal mental/superconductor/ferromagnet structures
Yu Hua-Ling(郁华玲), Peng Ju(彭菊), and Jin Ben-Xi(金本喜). Chin. Phys. B, 2010, 19(8): 087203.
[14] Proximity effects in normal mental/spin-splitting material/superconductor junctions
Yu Hua-Ling(郁华玲) and Dong Zheng-Chao(董正超). Chin. Phys. B, 2007, 16(10): 3072-3079.
No Suggested Reading articles found!