Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070311    DOI: 10.1088/1674-1056/24/7/070311
GENERAL Prev   Next  

Nonlinear tunneling through a strong rectangular barrier

Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东)
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China
Abstract  Nonlinear tunneling is investigated by analytically solving the one-dimensional Gross–Pitaevskii equation (GPE) with a strong rectangular potential barrier. With the help of analytical solutions of the GPE, which can be reduced to the solution of the linear case, we find that only the supersonic solution in the downstream has a linear counterpart. A critical nonlinearity is explored as an up limit, above which no nonlinear tunneling solution exists. Furthermore, the density solution of the critical nonlinearity as a function of the position has a step-like structure.
Keywords:  nonlinear tunneling      Gross-Pitaevskii equation (GPE)      analytic solution  
Received:  02 November 2014      Revised:  16 February 2015      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074155 and 11374197), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), China (Grant No. IRT13076), and the National High Technology Research and Development Program of China (Grant No. 2011AA010801).
Corresponding Authors:  Li Wei-Dong     E-mail:  wdli@sxu.edu.cn

Cite this article: 

Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东) Nonlinear tunneling through a strong rectangular barrier 2015 Chin. Phys. B 24 070311

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[4] Engels P and Atherton C 2007 Phys. Rev. Lett. 99 160405
[5] Dries D, Pollack S E, Hitchcock J M and Hulet R G 2010 Phys. Rev. A 82 033603
[6] Raman C, Kö hl M, Onofrio R, Durfee D S, Kuklewicz C E, Hadzibabic Z and Ketterle W 1999 Phys. Rev. Lett. 83 2502
[7] Onofrio R, Raman C, Vogels J M, Abo-Shaeer J R, Chikkatur A P and Ketterle W 2000 Phys. Rev. Lett. 85 2228
[8] Li W D 2006 Phys. Rev. A 74 063612
[9] Xin X F, Huang F, Xu Z J and Li H B 2014 Chin. Phys. B 23 070307
[10] Gou X Q, Meng H J, Wang W Y and Duan W S 2013 Chin. Phys. B 22 080307
[11] Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 060308
[12] Zheng Q, Li S C, Zhang X P, You T J and Fu L B 2012 Chin. Phys. B 21 093702
[13] Xue R, Liang Z X and Li W D 2009 Chin. Phys. B 10 4130
[14] Wang Y, Zong F D and Li F B 2013 Chin. Phys. B 22 030315
[15] Rapedius K, Witthaut D and Korsch H J 2006 Phys. Rev. A 73 033608
[16] Paul T, Hartung M, Richter K and Schlagheck P 2007 Phys. Rev. A 76 063605
[17] Leszczyszyn A M, El G A, Gladush Y G and Kamchatnov A M 2009 Phys. Rev. A 79 063608
[18] Kamchatnov A M and Pavloff N 2012 Phys. Rev. A 85 033603
[19] Pavloff N 2002 Phys. Rev. A 66 013610
[20] Leboeuf P and Pavloff N 2001 Phys. Rev. A 64 033602
[21] Piazza F, Collins L A and Smerzi A 2010 Phys. Rev. A 81 033613
[22] Carr L D, Miller R R, Bolton D R and Strong S A 2012 Phys. Rev. A 86 023621
[23] Recati A, Pavloff N and Carusotto I 2009 Phys. Rev. A 80 043603
[24] Larré P -É, Recati A, Carusotto I and Pavloff N 2012 Phys. Rev. A 85 013621
[25] Landau L D and Lifshitz E M 2007 Quantum Mechanics (Non-relativistic Theory) (3rd Edn.) (Singapore: Elsevier) pp. 76-80
[26] Xue R, Liang Z X and Li W D 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085302
[27] Xue R, Liang Z X and Li W D 2013 Chin. Phys. Lett. 31 030302
[28] Hakim V 1997 Phys. Rev. E 55 2835
[29] Li Z L, Vulkov L and Wasniewski J 2004 Numerical Analysis and Its Applications (Third Interna- tional Conference) Rousse, Bulgaria, June 29-July 3, 2004, p. 35
[30] Li W D and Liu J 2006 Phys. Rev. A 74 063613
[31] Liu J, Zhang C W, Raizen M G and Niu Q 2006 Phys. Rev. A 73 013601
[32] Zhang C W, Liu J, Raizen M G and Niu Q 2004 Phys. Rev. Lett. 92 054101
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Heat transfer analysis in the flow of Walters’B fluid with a convective boundary condition
T. Hayat, Sadia Asad, M. Mustafa, Hamed H. Alsulami. Chin. Phys. B, 2014, 23(8): 084701.
[3] Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2013, 22(2): 024702.
[4] Approximate analytic solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled mKdV equation
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江), Wu Di (吴迪). Chin. Phys. B, 2010, 19(8): 080204.
[5] Variational iteration method for solving compressible Euler equations
Zhao Guo-Zhong (赵国忠), Yu Xi-Jun (蔚喜军), Xu Yun (徐云), Zhu Jiang (朱江). Chin. Phys. B, 2010, 19(7): 070203.
[6] New approximate solution for time-fractional coupled KdV equations by generalised differential transform method
Liu Jin-Cun(刘金存) and Hou Guo-Lin(侯国林). Chin. Phys. B, 2010, 19(11): 110203.
[7] Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field
Ni Gu-Yan(倪谷炎), Yan Li(颜力), and Yuan Nai-Chang(袁乃昌). Chin. Phys. B, 2008, 17(10): 3629-3634.
No Suggested Reading articles found!