CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3 |
Wang Guang-Tao(王广涛)†, Zhang Min-Ping(张敏平), and Zheng Li-Hua(郑立花) |
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract We present the local density approximate+Gutzwiller results for the electronic structure of Ca1-xSrxVO3. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V—O—V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V—O—V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Ca1-xSrxVO3, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mott-insulator phase.
|
Received: 26 July 2010
Revised: 18 May 2011
Accepted manuscript online:
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
Cite this article:
Wang Guang-Tao(王广涛), Zhang Min-Ping(张敏平), and Zheng Li-Hua(郑立花) Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3 2011 Chin. Phys. B 20 097102
|
[1] |
Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
|
[2] |
Zhuang J N, Liu Q M, Fang Z and Dai X 2010 Chin. Phys. B 19 087104
|
[3] |
Kumagai K I, Suzuki T, Taguchi Y, Okada Y, Fujishima Y and Tokura Y 1993 Phys. Rev. B 48 7636
|
[4] |
Xu X F and Zhao Q H 2009 Acta Phys. Sin. 58 1908 (in Chinese)
|
[5] |
Mahajan A V, Johnston D C, Torgeson P R and Borsa F 1992 Phys. Rev. B 46 10973
|
[6] |
Inaba F, Arima T, Ishikawa T, Katsufuji T and Tokura Y 1995 Phys. Rev. B 52 R2221
|
[7] |
Hubbard J 1963 Proc. R. Soc. London, Ser. A 276 238
|
[8] |
Wang J and Arrigoni E 2009 Chin. Phys. B 18 2475
|
[9] |
Carter S A, Rosenbaum T F, Metcalf P, Honig J M and Spalek J 1993 Phys. Rev. B 48 16841
|
[10] |
Fujimori A, Hase I, Namotame, Fujishima Y, Tokura Y, Eisaki H, Uchida S, Takegahara K and de Groot F M F 1992 Phys. Rev. Lett. 69 1796
|
[11] |
Inoue I H, Goto O, Makino H, Hussey N E and Ishikawa M 1998 Phys. Rev. B 58 4372
|
[12] |
Makino H, Inoue I H, Rozenberg M J, Hase I, Aiura Y and Onari S 1998 Phys. Rev. B 58 4384
|
[13] |
Nekrasov I A, Keller G, Londakov D E, Kozhevnikov A V, Pruschke Th, Held K, Vollhardt D and Anisimov V I 2005 Phys. Rev. B 72 155106
|
[14] |
Eguchi R, Kiss T, Tsuda S, Shimojima T, Mizokami T, Yokoya T, Chainani A, Shin S, Inoue I H, Togashi T, Watanabe S, Zhang C Q, Chen C T, Arita M, Shimada K, Namatame H and Taniguchi M 2006 Phys. Rev. Lett. 96 076402
|
[15] |
Inoue I H, Hase I, Aiura Y, Fujimori A, Haruyama Y, Maruyama T and Nishihara Y 1995 Phys. Rev. Lett. 74 2539
|
[16] |
Morikawa K, Mizokawa T, Kobayashi K, Fujimori A, Eisaki H, Uchida S, Iga F and Nishihara Y 1995 Phys. Rev. B 52 13711
|
[17] |
Aiura Y, Iga F, Nishihara Y, Ohnuki H and Kato H 1993 Phys. Rev. B 47 6732
|
[18] |
Cai L G, Liu F M and Zhong W W 2010 Chin. Phys. B 19 097101
|
[19] |
Sun B and Zhang P 2008 Chin. Phys. B 17 1364
|
[20] |
Wang G T, Dai X and Fang Z 2008 Phys. Rev. Lett. 101 066403
|
[21] |
Wang G T, Qian Y M, Xu G, Dai X and Fang Z 2010 Phys. Rev. Lett. 104 047002
|
[22] |
Deng X Y, Wang L, Dai X and Fang Z 2009 Phys. Rev. B 79 075114
|
[23] |
Inoue I R, Bergemann C, Hase I and Julian S R 2002 Phys. Rev. Lett. 88 236403
|
[24] |
Sekiyama A, Fujiwara H, Imada S, Suga S, Eisaki H, Uchida S I, Takegahara K, Harima H, Saitoh Y, Nekrasov I A, Keller G, Kondakov D E, Kozhevnikov A V, Pruschke T, Held K, Vollhardt D and Anisimov V I 2004 Phys. Rev. Lett. 93 156402
|
[25] |
Chen W B, Han M G, Zhou H, Ou Y and Deng L J 2010 Chin. Phys. B 19 087502
|
[26] |
Yoshida T, Hashimoto M, Takizawa T, Fujimori A, Kubota M, Ono K and Eisaki H 2010 Phys. Rev. B 82 085119
|
[27] |
Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666
|
[28] |
Liebsch A 2003 Phys. Rev. Lett. 90 096401
|
[29] |
Fang Z, Nagaosa N and Terakura K 2004 Phys. Rev. B 69 045116
|
[30] |
Yoshimatsu K, Okabe T, Kumigashira H, Okamoto S, Aizaki K, Fujimori A and Oshima M 2010 Phys. Rev. Lett. 104 147601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|