Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 067203    DOI: 10.1088/1674-1056/24/6/067203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of de-trapping on carrier transport process in semi-insulating CdZnTe

Guo Rong-Rong (郭榕榕), Jie Wan-Qi (介万奇), Zha Gang-Qiang (查钢强), Xu Ya-Dong (徐亚东), Feng Tao (冯涛), Wang Tao (王涛), Du Zhuo-Tong (杜卓同)
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The effect of de-trapping on the carrier transport process in the CdZnTe detector is studied by laser beam-induced transient current (LBIC) measurement. Trapping time, de-trapping time, and mobility for electrons are determined directly from transient waveforms under various bias voltages. The results suggest that an electric field strengthens the capture and emission effects in trap center, which is associated with field-assisted capture and the Poole–Frenkel effect, respectively. The electron mobility is calculated to be 950 cm2/V·s and the corresponding electron mobility-lifetime product is found to be 1.32× 10-3 cm2/V by a modified Hecht equation with considering the surface recombination effect. It is concluded that the trapping time and de-trapping time obtained from LBIC measurement provide direct information concerning the transport process.

Keywords:  CdZnTe      LBIC      de-trapping      electron transport process      mobility  
Received:  17 September 2014      Revised:  05 January 2015      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.61.Ga (II-VI semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: 

Project supported by the National Instrumentation Program, China (Grant No. 2011YQ040082), the National Natural Science Foundation of China (Grant Nos. 61274081, 51372205, and 51202197), the National 973 Project of China (Grant No. 2011CB610400), the China Postdoctoral Science Foundation (Grant No. 2014M550509), and the 111 Project of China (Grant No. B08040).

Corresponding Authors:  Jie Wan-Qi     E-mail:  jwq@nwpu.edu.cn
About author:  72.80.Ey; 73.50.Gr; 73.61.Ga; 72.20.Jv

Cite this article: 

Guo Rong-Rong (郭榕榕), Jie Wan-Qi (介万奇), Zha Gang-Qiang (查钢强), Xu Ya-Dong (徐亚东), Feng Tao (冯涛), Wang Tao (王涛), Du Zhuo-Tong (杜卓同) Effect of de-trapping on carrier transport process in semi-insulating CdZnTe 2015 Chin. Phys. B 24 067203

[1] Schlesinger T E, Toney J E, Yoon H, Lee E Y, Brunett B A, Franks L and James R B 2001 Mater. Sci. Eng. R Reports 32 103
[2] Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G and James R B 2011 J. Electron. Mater. 40 274
[3] Prokesch M, Bale D S and Szeles C 2010 IEEE Trans. Nucl. Sci. 57 2397
[4] Suzuki K, Seto S, Sawada T and Imai K 2002 IEEE Trans. Nucl. Sci. 49 1287
[5] Fink J, Lodomez P, Krüger H, Pernegger H, Weilhammer P and Wermes N 2006 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 565 227
[6] Uxa S, Grill R and Belas E 2013 J. Appl. Phys. 114 094511
[7] Zhao X C, Ouyang X P, Xu Y D, Han H T, Zhang Z C, Wang T, Zha G Q and Ouyang X 2012 AIP Adv. 2 012162
[8] Suzuki K, Iwata A, Seto S, Sawada T and Imai K 2000 J. Cryst. Growth 215 909
[9] Spear W E 1969 J. Nonlinear Cryst. Solids 1 197
[10] Zanio K R, Akutagawa W M and Kikuchi R 1968 J. Appl. Phys. 39 2818
[11] Suzuki K, Seto S, Dairaku S, Takojima N, Sawada T and Imai K 1996 J. Electron. Mater. 25 1241
[12] "Supplementary Material"
[13] Franc J, Dědič V, Zázvorka J, Hakl M, Grill R and Sellin P J 2013 J. Phys. D. Appl. Phys. 46 235306
[14] Groza M, Krawczynski H, Garson A, Martin J W, Lee K, Li Q, Beilicke M, Cui Y, Buliga V, Guo M, Coca C and Burger A 2010 J. Appl. Phys. 107 023704
[15] Levi A, Schieber M M and Burshtein Z 1983 J. Appl. Phys. 54 2472
[16] Cola A, Farella I, Anni M and Martucci M C 2012 IEEE Trans. Nucl. Sci. 59 1569
[17] Ottaviani G, Canali C and Quaranta A A 1975 IEEE Trans. Nucl. Sci. NS-22 192
[18] Canali C, Martins M and Ottaviani G 1971 Phys. Rev. B 4 422
[19] Kiyama M, Tatsumi M and Yamada M 2005 Appl. Phys. Lett. 86 012102
[20] Cola A, Reggiani L and Vasanelli L 1997 J. Appl. Phys. 81 997
[21] McGregor D S, Rojeski R A, Knoll G F, Terry F L, East J and Eisen Y 1994 J. Appl. Phys. 75 7910
[22] Ganichev S, Ziemann E, Prettl W, Yassievich I, Istratov A and Weber E 2000 Phys. Rev. B 61 10361
[23] Ottaviani G, Canali C, Jacoboni C, Quaranta A A and Zanio K 1973 J. Appl. Phys. 44 360
[24] Suzuki K, Sawada T and Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958
[25] Lang D V and Henry C H 1975 Phys. Rev. Lett. 35 1525
[26] He Y, Chen X Q and Hou X Y 2014 Chin. Phys. B 23 097201
[27] Erickson J C, Yao H W, James R B, Hermon H and Greaves M 2000 J. Electron. Mater. 29 699
[1] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[2] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[7] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[11] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[12] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[13] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[14] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[15] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
No Suggested Reading articles found!