Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090701    DOI: 10.1088/1674-1056/ab96a6
GENERAL Prev   Next  

Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique

Zhi-Hong Ye(叶志红)1, Xiao-Lin Wu(吴小林)1, Yao-Yao Li(李尧尧)2
1 School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 School of Electronic and Information Engineering, Beihang University, Beijing 100083, China
Abstract  We present a time domain hybrid method to realize the fast coupling analysis of transmission lines excited by space electromagnetic fields, in which parallel finite-difference time-domain (FDTD) method, interpolation scheme, and Agrawal model-based transmission line (TL) equations are organically integrated together. Specifically, the Agrawal model is employed to establish the TL equations to describe the coupling effects of space electromagnetic fields on transmission lines. Then, the excitation fields functioning as distribution sources in TL equations are calculated by the parallel FDTD method through using the message passing interface (MPI) library scheme and interpolation scheme. Finally, the TL equations are discretized by the central difference scheme of FDTD and assigned to multiple processors to obtain the transient responses on the terminal loads of these lines. The significant feature of the presented method is embodied in its parallel and synchronous calculations of the space electromagnetic fields and transient responses on the lines. Numerical simulations of ambient wave acting on multi-conductor transmission lines (MTLs), which are located on the PEC ground and in the shielded cavity respectively, are implemented to verify the accuracy and efficiency of the presented method.
Keywords:  Agrawal model      transmission line equations      parallel FDTD method      message passing interface (MPI) library  
Received:  11 March 2020      Revised:  04 May 2020      Accepted manuscript online:  27 May 2020
PACS:  07.05.Tp (Computer modeling and simulation)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61701057) and the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2017jcyjAX0345).
Corresponding Authors:  Yao-Yao Li     E-mail:

Cite this article: 

Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧) Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique 2020 Chin. Phys. B 29 090701

[1] Baum C E, Liu T E and Tesche F M 1978 Interaction Notes 350 467
[2] Agrawal A K, Price H J, and Gurbaxani S H 1980 IEEE Trans. Electromagn. Compat. 22 119
[3] Du J K, Hwang S M, Ahn J W and Yook J G 2013 IEEE Trans. Microw. Theory Tech. 61 3514
[4] Luo J W, Du P A, Ren D and Nie B L 2015 Acta Phys. Sin. 64 010701 (in Chinese)
[5] Ni G Y, Yan L and Yuan N C 2008 Chin. Phys. B 17 3629
[6] Erdin I, Dounavis A and Achar R 2001 IEEE Trans. Electromagn. Compat. 43 485
[7] Xie H Y, Wang J G, Fan R Y and Liu Y N 2009 IEEE Trans. Electromagn. Compat. 51 811
[8] Paul C R 1994 IEEE Trans. Electromagn. Compat. 36 342
[9] Xie H Y, Wang J G, Li Y and Xia H F 2014 IEEE Trans. Electromagn. Compat. 56 1623
[10] Xie H Y, Li Y, Qiao H L and Wang J G 2016 IEEE Trans. Electromagn. Compat. 58 581
[11] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[12] Ye Z H, Xiong X Z, Liao C and Li Y 2015 Prog. Electromagn. Res. M 42 85
[13] Ye Z H, Liao C, Xiong X Z and Zhang M 2017 IEEE Trans. Electromagn. Compat. 59 1211
[14] Ye Z H, Zhang J, Zhou J J and Gou D 2020 Acta Phys. Sin. 69 060701 (in Chinese)
[15] Volakis J L, Davidson D B, Guiffaut C and Mahdjoubi K 2001 IEEE Antennas Propag. Mag. 43 94
[16] Varadarajan V and Mittra R 1994 IEEE Microw. Guided Wave Lett. 4 144
[17] Alighanbari A and Sarris C D 2009 IEEE Trans. Antennas Propag. 57 231
[18] He X B, Wei B, Fan K H, Li Y W and Wei X L 2019 Chin. Phys. B 28 074102
[1] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[2] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[5] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[6] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[9] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[10] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[11] Modeling the dynamics of firms' technological impact
Shuqi Xu(徐舒琪), Manuel Sebastian Mariani, and Linyuan Lü(吕琳媛). Chin. Phys. B, 2021, 30(12): 120517.
[12] Using agent-based simulation to assess diseaseprevention measures during pandemics
Yunhe Tong(童蕴贺), Christopher King, and Yanghui Hu(胡杨慧). Chin. Phys. B, 2021, 30(9): 098903.
[13] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[14] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[15] Reputational preference and other-regarding preference based rewarding mechanism promotes cooperation in spatial social dilemmas
Huayan Pei(裴华艳), Guanghui Yan(闫光辉), and Huanmin Wang(王焕民). Chin. Phys. B, 2021, 30(5): 050203.
No Suggested Reading articles found!