Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 058902    DOI: 10.1088/1674-1056/24/5/058902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A cellular automata model of traffic flow with variable probability of randomization

Zheng Wei-Fan (郑伟范)a b, Zhang Ji-Ye (张继业)a
a Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China;
b Institute of Information Research, Southwest Jiaotong University, Chengdu 610031, China
Abstract  Research on the stochastic behavior of traffic flow is important to understand the intrinsic evolution rules of a traffic system. By introducing an interactional potential of vehicles into the randomization step, an improved cellular automata traffic flow model with variable probability of randomization is proposed in this paper. In the proposed model, the driver is affected by the interactional potential of vehicles before him, and his decision-making process is related to the interactional potential. Compared with the traditional cellular automata model, the modeling is more suitable for the driver's random decision-making process based on the vehicle and traffic situations in front of him in actual traffic. From the improved model, the fundamental diagram (flow–density relationship) is obtained, and the detailed high-density traffic phenomenon is reproduced through numerical simulation.
Keywords:  traffic flow      interactional potential      probability of randomization      cellular automata  
Received:  25 September 2014      Revised:  01 December 2014      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.10.Ln (Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172247, 61273021, 61373009, and 61100118).
Corresponding Authors:  Zhang Ji-Ye     E-mail:  jyzhang@home.swjtu.edu.cn
About author:  89.40.Bb; 02.50.-r; 05.10.Ln

Cite this article: 

Zheng Wei-Fan (郑伟范), Zhang Ji-Ye (张继业) A cellular automata model of traffic flow with variable probability of randomization 2015 Chin. Phys. B 24 058902

[1] Skinner R E Jr 2003 Transit Capacity and Quality of Service Manual (2nd Edition) (Washington D.C.: Transportation Research Board (TRB))
[2] Kerner B S and Rehborn H 1997 Phys. Rev. Lett. 79 4030
[3] Greenshields B D 1935 Proceedings of the 14th Annual Meeting of the Highway Research Board pp. 448-477
[4] Pipes L A 1953 J. Appl. Phys. 24 274
[5] Chowdhury D, Santen L and Schadschneider A 2000 Physics Reports 329 199
[6] Lighthill M J and Whitham G B 1955 Proc. Roy. Soc. A 229 317
[7] Richards P 1956 Operations Research 4 42
[8] Schadschneider A 2002 Physica A 312 153
[9] Nelson P 1995 Trans. Theory Stat. Phys. 24 383
[10] Daganzo C F 1995 Transp. Res. B 29 277
[11] Newell G F 1989 Transp. Res. B 23 386
[12] Aw A and Rascle M 2000 SIAM J. Appl. Math. 60 916
[13] Sopasakis A 2003 SIAM J. Appl. Math. 63 1561
[14] Nagel K and Schreckenberg M 1992 J. Phys. I 2 2221
[15] Benjamin S C, Johnson N F and Hui P M 1996 J . Phys. A: Math. & Gen. 29 3119
[16] LI X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[17] Barlovic R, Santen L, Schadschneider A and Schrechenberg M 1998 Eur. J. Phys. B 5 793
[18] Knospe W, Santen L, Schadschneider A and Schrechenberg M 2000 J. Phys. A 33 L477
[19] Knospe W, Santen L, Schadschneider and Schrechenberg M 2002 Phys. Rev. E 65 056133
[20] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[21] Mou Y B and Zhong C W 2005 Acta Phys. Sin. 54 5597 (in Chinese)
[22] Ding J X, Huang H J and Tang T Q 2009 Acta Phys. Sin. 58 7591 (in Chinese)
[23] Bentaleb K, Jetto K, Ez-Zahraouy H andBenyoussef A 2013 Chin. Phys. B 22 018902
[24] Xiang Z T and Xiong Li 2013 Chin. Phys. B 22 028901
[25] Yeldan O, Colorni A, Lue A and Rodaro E 2012 Procedia-Social and Behavioral Sciences 54 1350
[26] Emanuele R and Oznur Y 2013 arXiv:1302.0488v1 [cs.MA]
[27] Sopasakis A and Katsoulakis M A 2006 SIAM J. Appl. Math. 66 921
[28] Sopasakis A 2004 Physica A 342 741
[29] Sopasakis A 2008 J. Stat. Phys. 133 1083
[30] Sopasakis A 2013 Procedia-Social and Behavioral Sciences 80 837
[31] Hauck C, Sun Y and Timofeyev I 2012 arXiv:1209.5802v1 [math.PR]
[32] Vlachos D G and Katsoulakis M A 2000 Phys. Rev. Lett. 85 3898
[33] Liggett T M 1985 Interacting Particle Systems (Berlin: Springer) pp. 361-413
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[5] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[6] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[7] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[8] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[9] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[10] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[11] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[15] Influence of bus stop with left-turn lines between two adjacent signalized intersections
Ming-Bao Pang(庞明宝), Lan-Hang Ye(叶兰杭), Ya-Nan Pei(裴亚男). Chin. Phys. B, 2016, 25(8): 088901.
No Suggested Reading articles found!