Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 057102    DOI: 10.1088/1674-1056/24/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

Li Xin (李昕), Zhou Wei-Man (周伟满), Liu Wei-Hua (刘卫华), Wang Xiao-Li (王小力)
Department of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results.
Keywords:  carbon nanotubes (CNTs)      ZnO      field emission      Penn–Plummer model  
Received:  03 October 2014      Revised:  30 December 2014      Accepted manuscript online: 
PACS:  71.55.-i (Impurity and defect levels)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.Ad (Ballistic transport)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
Corresponding Authors:  Li Xin     E-mail:  lx@mail.xjtu.edu.cn
About author:  71.55.-i; 71.15.Mb; 73.23.Ad; 73.63.Fg

Cite this article: 

Li Xin (李昕), Zhou Wei-Man (周伟满), Liu Wei-Hua (刘卫华), Wang Xiao-Li (王小力) Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes 2015 Chin. Phys. B 24 057102

[1] Sun X W, Huang J Z, Wang J X and Xu Z 2008 Nano Lett. 8 1219
[2] Peng N, Zhang Q, Lee Y C, Tan O K and Marzari N 2008 Sensor. Actuat. B 132 191
[3] Wang Q H, Yan M and Chang R P 2001 Appl. Phys. Lett. 78 1294
[4] Zhang J M, Du X J, Wang S F and Xu K W 2009 Chin. Phys. B 18 5468
[5] Verma P, Gautam S, Pal S, Kumar1 P and Chaturvedi P 2008 Defence Sci. J. 58 650
[6] Kim S, Cho E, Han S and Cho Y 2009 Solid State Commun. 149 670
[7] Wang Y Jun, Wang L D, Yang M and Yan C 2011 Chin. Phys. B 20 117304
[8] Jin L, Fu H G, Xie Y and Yu H T 2012 Chin. Phys. B 21 057901
[9] Korobeinyk A V, Whitby R L D, Niu J J, Gogotsi Y and Mikhalovsky S V 2011 Mater. Chem. Phys. 128 514
[10] Ratkovic S, Vujicic D, Kiss E, Boskovic G and Geszti O 2011 Mater. Chem. Phys. 129 398
[11] Li X, Liu W and Zhu C 2008 J. Vac. Sci. Technol. B 26 171
[12] Papadopoulos C A, Vlachos D S and Avaritsiotis J N 1996 Sensor. Actuat. B 32 61
[13] Li X, Zhao D C, Pang K G, Pang J C, Liu W H, Liu H Z and Wang X L 2013 Appl. Surf. Sci. 283 740
[14] Penn D R 1976 Phys. Rev. B 14 849
[15] Fairchild S B, Back T C, Murray P T and Cahay M M 2011 J. Vac. Sci. Technol. A 29 031402
[16] Choi I M, Woo S Y and Hong S S 2006 J. Vac. Sci. Technol. A 24 1556
[17] Zhang X and Song Y R 2014 Chin. Phys. B 23 064204
[18] Xie Y and Zhang J M 2011 Chin. Phys. B 20 127302
[19] Liu C L, Kim K S and Baek J 2009 Carbon 47 1158
[20] Mayer A, Miskovsky N M, Cutler P H and Lambin P 2003 Phys. Rev. B 68 235401
[21] Liu H Z, Ma H, Zhou W M, Liu W H, Zheng J and Li X 2012 Appl. Surf. Sci. 258 1991
[22] Liu X H, Zhu C C and Liu W H 2005 Mater. Chem. Phys. 92 473
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[5] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[6] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[10] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[11] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[12] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[13] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[14] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[15] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
No Suggested Reading articles found!