Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 048102    DOI: 10.1088/1674-1056/24/4/048102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline

Abdollah Hajaliloua, Mansor Hashima, Reza Ebrahimi-Kahrizsangib, Mohamad Taghi Masoudib
a Material Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia;
b Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
Abstract  Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 ℃ for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated.
Keywords:  Ni-Zn ferrite nanocrystalline      mechanical alloying      milling atmosphere      milling time      magnetic property  
Received:  30 September 2014      Revised:  08 November 2014      Accepted manuscript online: 
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
  91.60.Pn (Magnetic and electrical properties)  
  92.70.Cp (Atmosphere)  
Fund: Project supported by the University Putra Malaysia Graduate Research Fellowship Section.
Corresponding Authors:  Abdollah Hajalilou     E-mail:  e.hajalilou@yahoo.com

Cite this article: 

Abdollah Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, Mohamad Taghi Masoudi Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline 2015 Chin. Phys. B 24 048102

[1] Shinde T J, Gadkari A B and Vasambekar P N 2008 Mater. Chem. Phys. 111 87
[2] Atif M, Nadeem M, Grössinger R and Turtelli R S 2011 J. Alloys Compd. 509 5720
[3] Raghavender A T, Biliškov N and Skoko Ž 2011 Mater. Lett. 65 677
[4] Jahanbin T, Hashim M and Amin Mantori K 2010 J. Magn. Magn. Mater. 322 2684
[5] Suryanarayana C 2001 Prog. Mater. Sci. 46 1
[6] Hajalilou A, Hashim M, Nahavandi M and Ismail I 2014 Adv. Powder Technol. 25 423
[7] Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R and Sarami N 2014 Ceram. Int. 40 5881
[8] Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Mohamed Kamari H and Kanagesan S 2014 Mater. Sci. Poland 32 281
[9] Yu L, Zhang J, Liu Y, Jing C and Cao S 2005 J. Magn. Magn. Mater. 288 54
[10] Ismail I, Hashim M, Amin Matori K, Alias R and Hassan J 2011 J. Magn. Magn. Mater. 323 1470
[11] Jalaly M, Enayati M H, Karimzadeh F and Kameli P 2009 Powder Technol. 193 150
[12] Bid S and Pradhan S K 2003 Mater. Chem. Phys. 82 27
[13] Smit J and Wijn H P J 1959 Ferrites (Phililps Technical Library, Eindhovan, Netherlands)
[14] Vasoya N H, Vanpariya L H, Sakariya P N, Timbadiya M D, Pathak T K, Lakhani V K and Modi K B 2010 Ceram. Int. 36 947
[15] Williamson G K and Hall W H 1953 Acta Metall. 1 22
[16] Kingery W, Bowen H and Uhlmann D 2014 Introduction to Ceramics, 2nd edn. (New York: John Wiley & Sons)
[17] Kang Suk-Joong L 2004 Sintering: Densification, Grain Growth and Microstructure (Burlington, MA: Elsevier, Butterworth-Heinemann) pp. 27, 280, ISBN-10: 0750663855, ISBN-13: 978-0750663854
[18] Abdul Khadar M, Biju V and Inoue A 2003 Mater. Res. Bull. 38 1341
[19] Richardson J T and Milligan W O 1956 Phys. Rev. 102 1289
[20] Schuele W J and Deetscreek V D 1962 J. Appl. Phys. Suppl. 33 1136
[21] Jiles D 1991 Introduction to Magnetism and Magnetic Materials (London: Chapman and Hall) p. 182
[22] Gharagozlou M 2010 J. Alloys Compd. 495 217
[1] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[2] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[3] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[4] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[5] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[6] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[7] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[8] The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds
Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(2): 027501.
[9] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
[10] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[11] A-site ordered perovskiteCaCu3Cu2Ir2O12-δ with square-planar and octahedral coordinated Cu ions
Qing Zhao(赵庆), Yun-Yu Yin(殷云宇), Jian-Hong Dai(戴建洪), Xi Shen(沈希), Zhi-Wei Hu(胡志伟), Jun-Ye Yang(杨俊叶), Qing-Tao Wang(王清涛), Ri-Cheng Yu(禹日成), Xiao-Dong Li(李晓东), You-Wen Long(龙有文). Chin. Phys. B, 2016, 25(2): 020701.
[12] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[13] Magnetocaloric effects in RTX intermetallic compounds (R=Gd-Tm, T=Fe-Cu and Pd, X=Al and Si)
Zhang Hu (张虎), Shen Bao-Gen (沈保根). Chin. Phys. B, 2015, 24(12): 127504.
[14] Direct evidence of high temperature superconductivity in one-unit-cell FeSe films on SrTiO3 substrate by transport and magnetization measurements
Xing Ying (邢颖), Wang Jian (王健). Chin. Phys. B, 2015, 24(11): 117404.
[15] Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films
Wei Jian-Qing (魏建清), Geng Hao (耿昊), Xu Lei (徐磊), Wang Lai-Sen (王来森), Chen Yuan-Zhi (陈远志), Yue Guang-Hui (岳光辉), Peng Dong-Liang (彭栋梁). Chin. Phys. B, 2014, 23(8): 087504.
No Suggested Reading articles found!