Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 035202    DOI: 10.1088/1674-1056/24/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Start-up phase plasma discharge design of a tokamak via control parameterization method

Guo Shan (郭珊)a, Xu Ke (许珂)a, Xu Chao (许超)b, Ren Zhi-Gang (任志刚)b, Xiao Bing-Jia (肖炳甲)c
a Department of Mathematics, Zhejiang University, Hangzhou 310027, China;
b State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou 310027, China;
c Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The tokamak start-up is a very important phase during the process to obtain a suitable equalizing plasma, and its governing model can be described as a set of nonlinear ordinary differential equations (ODEs). In this paper, we first estimate the parameters in the original model and set up an accurate model to express how the variables change during the start-up phase, especially how the plasma current changes with respect to time and the loop voltage. Then, we apply the control parameterization method to obtain an approximate optimal parameters selection problem for the loop voltage design to achieve a desired plasma current target. Computational optimal control techniques such as the variational method and the costate method are employed to solve the problem, respectively. Finally, numerical simulations are performed and the results obtained via different methods are compared. Our numerical parameterization method and optimization procedure turn out to be effective.
Keywords:  tokamak      start-up      optimal control      variational method  
Received:  16 September 2014      Revised:  29 October 2014      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61104048 and 61473253) and the National High Technology Research and Development Program of China (Grant No. 2012AA041701).
Corresponding Authors:  Xu Chao     E-mail:  cxu@zju.edu.cn

Cite this article: 

Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲) Start-up phase plasma discharge design of a tokamak via control parameterization method 2015 Chin. Phys. B 24 035202

[1] Schultz K R 2006 IEEE Control Syst. 26 32
[2] Mukhovatov V S and Shafranov V D 1971 Nucl. Fusion 11 605
[3] Xu C, Ou Y, Dalessio J, Schuster E, Luce T C, Ferron J R, Walker M L and Humphreys D A 2010 IEEE Trans. Plasma Sci. 38 163
[4] Knoepful H 1985 Tokamak Start-up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (New York: Springer) pp. 7-43
[5] Papoular R 1976 Nucl. Fusion 16 37
[6] Ikeda K 2007 Nucl. Fusion 47 preface
[7] Lloyd B, Carolan P G and Warrick C D 1996 Plasma Phys. Control. Fusion 38 1627
[8] Azizov E A, Barkalov A D, Gladush G G, et al. 2003 Problems of Atomic Science and Technology. Series: Plasma Physics 1 49
[9] Barkalov A D and Gladush G G 2007 Plasma Devices and Operations 15 185
[10] Leuer J A, Xiao B J, Humphreys D A, Walker M L, Hyatt A W, Jackson G L, Mueller D, Penaflor B G, Piglowski D A, Johnson R D and others 2010 Fusion Science and Technology 57 48
[11] Teo K L, Goh C J and Wong K H 1991 A Unified Computational Approach to Optimal Control Problems (New York: Longman Scientific and Technical) pp. 99-122
[12] Lin Q, Loxton R and Teo K L 2013 Journal of the Operations Research Society of China 1 275
[13] Yu X, Ren Z G and Xu C 2014 Chin. Phys. B 23 040201
[14] Byrd R H, Gilbert J C and Nocedal J 2000 Math. Program. 89 149
[15] Nocedal J and Wright S J 2006 Numerical Optimization (New York: Springer) pp. 526-572
[16] Loxton R, Teo K L and Rehbock V 2008 Automatica 44 2923
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[5] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[6] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[7] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[8] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[9] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[10] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[11] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[12] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[13] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[14] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[15] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
No Suggested Reading articles found!