PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
A tunable magnetically insulated transmission line oscillator |
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德) |
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract A tunable magnetically insulated transmission line oscillator (MILO) is put forward and simulated. When the MILO is driven by a 430 kV, 40.6 kA electron beam, high-power microwave is generated with a peak output power of 3.0 GW and frequency of 1.51 GHz, and the relevant power conversion efficiency is 17.2%. The 3-dB tunable frequency range (the relative output power is above half of the peak output power) is 2.25-0.825 GHz when the outer radius of the slow-wave structure (SWS) vanes ranges from 77 mm to 155 mm, and the 3-dB tuning bandwidth is 92%, which is sufficient for the aim of large-scale tuning and high power output.
|
Received: 29 October 2014
Revised: 30 November 2014
Accepted manuscript online:
|
PACS:
|
52.59.-f
|
(Intense particle beams and radiation sources)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
52.27.Ny
|
(Relativistic plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075210) and the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 201104761). |
Corresponding Authors:
Fan Yu-Wei
E-mail: fyw9108212@126.com
|
Cite this article:
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德) A tunable magnetically insulated transmission line oscillator 2015 Chin. Phys. B 24 035203
|
[1] |
Haworth M, Allen K, Baca G, Benford J, Englert T, Hackett K, Hendricks K, Henley D, Lemke R, Price D, Ralph D, Sena M, Shiffler D and Spencer T 1997 Proc. SPIE 3158 28
|
[2] |
Lemke R W, Calico S E and Clark M C 1997 IEEE Trans. Plasma Sci. 25 364
|
[3] |
Eastwood J W, Hawkins K C and Hook M P 1998 IEEE Trans. Plasma Sci. 26 698
|
[4] |
Balakirev V A, Marov P I, Sotnikov G V and Tkach Y V 1999 IEEE International University Conference on Electronics and Radio physics of Ultra-High Frequencies, May 24-28, St Petersburg, USA p. 170
|
[5] |
Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Liu J L, Yang J H, Zhang J, Yuan C W and Luo L 2008 Rev. Sci. Instrum. 79 034703
|
[6] |
Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Zhang J, Zhang X P, Yang J H, Zhang J and Luo L 2007 J. Appl. Phys. 102 103304
|
[7] |
Calico S E, Clark M C, Lemke R W and Scott M C 1995 Proc. SPIE 2557 50
|
[8] |
Fan Y W, Zhong H H, Li Z Q, Shu T and Li Z Q 2008 Phys. Plasmas 15 083108
|
[9] |
Li Z Q, Zhong H H, Fan Y W, Shu T, Qian B L, Xu L R and Zhao Y S 2009 Chin. Phys. Lett. 26 055201
|
[10] |
Fan Y W, Zhong H H, Li Z Q, Yuan C W, Shu T, Yang H W, Wang Y and Luo L 2011 IEEE Trans. Plasma Sci. 39 540
|
[11] |
Yang Y L and Ding W 2001 High Power Laser and Particle Beams 13 76 (in Chinese)
|
[12] |
Fan Y W, Shu T, Liu Y G, Zhong H H, Li Z Q, Wang Y, Zhao Y S and Luo L 2005 Chin. Phys. Lett. 22 164
|
[13] |
Fan Y W, Yuan C W, Zhong H H, Shu T and Luo L 2007 IEEE Trans. Plasma Sci. 35 379
|
[14] |
Zhang X P, Zhong H H, Shu T and Zhang J D 2004 High Power Laser and Particle Beams 16 485 (in Chinese)
|
[15] |
Fan Y W, Yuan C W, Zhong H H, Shu T, Zhang J D, Yang J H, Yang H W, Wang W and Luo L 2007 IEEE Trans. Plasma Sci. 35 1075
|
[16] |
Fan Y W, Zhong H H, Zhang J D, Shu T and Liu J L 2014 Rev. Sci. Instrum. 85 053512
|
[17] |
Fan Y W, Zhong H H, Li Z Q, Shu T, Yang H W, Zhou H, Yuan C W, Zhou W H and Luo L 2008 Phys. Plasmas 15 083102
|
[18] |
Cousin R, Larour J, Gardelle J, Cassany B, Modin P, Gouard P and Raymond P 2007 IEEE Trans. Plasma Sci. 35 1467
|
[19] |
Yang W Y 2008 IEEE Trans. Plasma Sci. 36 2801
|
[20] |
Fan Y W, Zhong H H, Yang H W, Li Z Q, Shu T, Zhang Jun, Wang Y and Luo L 2008 J. Appl. Phys. 103 123301
|
[21] |
Ju J C, Fan Y W, Zhong H H and Shu T 2009 J. Appl. Phys. 16 073103
|
[22] |
Ju J C, Fan Y W and Zhong H H 2009 IEEE Trans. Plasma Sci. 37 2041
|
[23] |
Fan Y W, Zhong H H, Li Z Q, Shu T, Yang H W, Yang J H, Wang Y, Luo L and Zhao Y S 2008 Chin. Phys. B 17 1804
|
[24] |
Wen J, Chen D B, Wang D and Qin F 2013 IEEE Trans. Plasma Sci. 41 2501
|
[25] |
Fan Y W, Zhong H H and Shu T 2008 Phys. Plasmas 15 123504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|