Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014209    DOI: 10.1088/1674-1056/24/1/014209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-wavelength generation from cascaded wavelength conversion in monolithic periodically poled lithium niobate

Xiao Kun (肖坤)a, Zhang Jing (张静)a, Chen Bao-Qin (陈宝琴)a, Zhang Qiu-Lin (张秋琳)a, Zhang Dong-Xiang (张东香)a, Feng Bao-Hua (冯宝华)a, Zhang Jing-Yuan(张景园)b
a Key Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, USA
Abstract  

Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate (PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm, were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation (OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation (SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50 ℃ and a quantum efficiency of 26.2% for SFG at 200 ℃ were obtained.

Keywords:  nonlinear optics      periodically poled lithium niobate      cascaded wavelength conversion process  
Received:  02 July 2014      Revised:  14 July 2014      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  77.84.Ek (Niobates and tantalates)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632704).

Corresponding Authors:  Feng Bao-Hua     E-mail:  bhfeng@iphy.ac.cn

Cite this article: 

Xiao Kun (肖坤), Zhang Jing (张静), Chen Bao-Qin (陈宝琴), Zhang Qiu-Lin (张秋琳), Zhang Dong-Xiang (张东香), Feng Bao-Hua (冯宝华), Zhang Jing-Yuan(张景园) Three-wavelength generation from cascaded wavelength conversion in monolithic periodically poled lithium niobate 2015 Chin. Phys. B 24 014209

[1] Louisell W H, Yariv A, and Siegman A E 1961 Phys. Rev. 124 1646
[2] Franken P A and Ward J F 1963 Rev. Mod. Phys. 35 23
[3] Midwinter J E 2003 Appl. Phys. Lett. 12 68
[4] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918
[5] Yamada M, Nada N, Saitoh M and Watanabe K 1993 Appl. Phys. Lett. 62 435
[6] Webjörn J, Pruneri V, Russell P S J, Barr J R M and Hanna D C 1994 Electron. Lett. 30 894
[7] Chiang A C, Wang T D, Lin Y Y, Lau C W, Chen Y H, Wong B C, Huang Y C, Shy J T, Lan Y P, Chen Y F and Tsao P H 2004 IEEE J. Quantum Elect. 40 791
[8] Baxter G W, He Y and Orr B J 1998 Appl. Phys. B 67 753
[9] Ruebel F, Anstett G and L'huillier J A 2011 Appl. Phys. B 102 751
[10] Yu Y J, Chen X Y, Zhao J, Wang C, Wu C T and Jin G Y 2014 Opt. Eng. 53 061604
[11] Chiang A C, Huang Y C, Fang Y W and Chen Y H 2001 Opt. Lett. 26 66
[12] Robles-Agudo M and Cudney R S 2011 Appl. Phys. B 103 99
[13] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett. 31 024204
[14] Gao Z D, Zhu S N, Tu S Y and Kung A H 2006 Appl. Phys. Lett. 89 181101
[15] Xu P, Zhao L N, Lü X J, Lu J, Yuan Y, Zhao G and Zhu S N 2009 Opt. Express 17 9509
[16] Jundt D H 1997 Opt. Lett. 22 1553
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[12] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[13] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[14] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!