Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 016401    DOI: 10.1088/1674-1056/24/1/016401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of far-field flow on a columnar crystal in the convective undercooled melt

Ji Xiao-Jian (姬小建)a, Chen Ming-Wen (陈明文)a, Xu Xiao-Hua (徐小花)a, Wang Zi-Dong (王自东)b
a School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
b School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations.
Keywords:  columnar crystal      far-field uniform flow      interface morphology      crystal growth  
Received:  16 June 2014      Revised:  25 August 2014      Accepted manuscript online: 
PACS:  64.70.D- (Solid-liquid transitions)  
  68.08.-p (Liquid-solid interfaces)  
  81.30.Fb (Solidification)  
Fund: Project supported by the Overseas Distinguished Scholar Program by the Ministry of Education of China (Grant No. MS2010BJKJ005), the National Natural Science Foundation of China (Grant No. 10972030), and the Science and Technology Support Project of Jiangxi, China (Grant No. 20112BBE50006).
Corresponding Authors:  Chen Ming-Wen     E-mail:  chenmw@ustb.edu.cn

Cite this article: 

Ji Xiao-Jian (姬小建), Chen Ming-Wen (陈明文), Xu Xiao-Hua (徐小花), Wang Zi-Dong (王自东) Effect of far-field flow on a columnar crystal in the convective undercooled melt 2015 Chin. Phys. B 24 016401

[1] Mei X Y, Ma W H, Wei K X, Yang B and Dai Y N 2009 Acta Scientiarum Naturalium Un. 48 89
[2] Yan N, Dai F P, Wang W L and Wei B B 2011 Chin. Phys. Lett. 28 078101
[3] Chen C, Chen Z, Zhang J and Yang T 2012 Acta Phys. Sin. 61 108103 (in Chinese)
[4] Du L F, Zhang R, Xing H, Zhang L M, Zhang Y and Liu L 2013 Acta Phys. Sin. 62 106401 (in Chinese)
[5] Coriell S R and Parker R L 1965 J. Appl. Phys. 36 632
[6] Mullins W W and Sekerka R F 1963 J. Appl. Phys. 34 323
[7] Chen Y J, Chen Q, Wang Z D, Hu H Q, Liu Y M and Lian Y D 2004 J. Tsinghua Sci. Technol. 44 1464 (in Chinese)
[8] Buchholz A and Engler S 1996 Comput. Mater. Sci. 7 221
[9] Lv H, Tang S L and Zhou W P 2011 Chin. Phys. Lett. 28 084708
[10] Cao B, Lin X, Wang M and Huang W D 2012 Chin. Phys. B 21 086401
[11] Chen C C, Lin H K and Lan C W 2014 J. Cryst. Growth 385 121
[12] Chen M W, Ni F, Wang Y L, Wang Z D and Xie J X 2011 Acta Phys. Sin. 60 068103 (in Chinese)
[13] Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D and Xu J J 2009 Chin. Phys. B 18 1691
[14] Zhang Y P, Lin X, Wei L, Peng D J, Wang M and Huang W D 2013 Acta Phys. Sin. 62 178105 (in Chinese)
[15] Galenko P K, Funke O, Wang J and Herlach D M 2004 Mater. Sci. Eng. A 375-377 488
[16] Cao B, Lin X, Wang M and Huang W D 2012 Chin. Phys. B 21 056401
[17] Zhang W and Chen C 2012 Chin. Phys. Lett. 29 084701
[18] Chen M W, Wang B and Wang Z D 2013 Chin. Phys. B 22 116805
[19] Bhattacharyya K and Pop L 2014 Chin. Phys. B 23 024701
[20] Chen M W, Wang Z D, Xie J X and Xu J J 2008 Acta Mech. Sin. 24 681
[21] Chen M W and Wang Z D 2013 Chin. Phys. B 22 098104
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[3] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[4] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[5] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[6] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[7] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[8] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[9] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[10] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[11] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[12] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[13] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[14] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[15] Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal
Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh. Chin. Phys. B, 2018, 27(4): 047801.
No Suggested Reading articles found!