Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118902    DOI: 10.1088/1674-1056/23/11/118902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimization of robustness of network controllability against malicious attacks

Xiao Yan-Dong (肖延东), Lao Song-Yang (老松杨), Hou Lv-Lin (侯绿林), Bai Liang (白亮)
College of Information Systems and Management, National University of Defense Technology, Changsha 410073, China
Abstract  As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.
Keywords:  robustness      network controllability      structure controllability  
Received:  25 March 2014      Revised:  26 May 2014      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60902094) and the Military Science Foundation of China (Grant No. 2010JY0072-046).
Corresponding Authors:  Xiao Yan-Dong     E-mail:  xiaoyandong08@gmail.com

Cite this article: 

Xiao Yan-Dong (肖延东), Lao Song-Yang (老松杨), Hou Lv-Lin (侯绿林), Bai Liang (白亮) Optimization of robustness of network controllability against malicious attacks 2014 Chin. Phys. B 23 118902

[1] Barzel B and Barabási A L 2013 Nat. Phys. 9 673
[2] Arenas A, Diaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[3] Lloyd A L and May R M 2001 Science 292 1316
[4] Liu Z B, Zhang H G and Sun Q Y 2010 Chin. Phys. B 19 090506
[5] Moreno Y, Nekovee M and Pacheco A F 2004 Phys. Rev. E 69 066130
[6] Wu J S, Jiao L C and Chen G R 2011 Chin. Phys. B 20 060503
[7] Shen Y, Pei W J, Wang K and Wang S P 2009 Chin. Phys. B 18 3783
[8] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167
[9] Egerstedt M 2011 Nature 473 158
[10] Müller F J and Schuppert A 2011 Nature 478 E4
[11] Sorrentino F, Bernardo M, Garofalo F and Chen G R 2007 Phys. Rev. E 75 046103
[12] Lin C T 1974 IEEE Trans. Autom. Contr. 19 201
[13] Wang W X, Ni X, Lai Y C and Grebogi C 2012 Phys. Rev. E 85 026115
[14] Hou L L, Lao S Y, Liu G and Bai L 2012 Chin. Phys. Lett. 29 108901
[15] Banerjee S J and Roy S 2012 arXiv:1209.3737
[16] Sole R V, Rosas-Casals M, Corominas-Murtra B and Valverde S 2008 Phys. Rev. E 77 026102
[17] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[18] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[19] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[20] Xiao Y D, Lao S Y, Hou L L and Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese)
[21] Lv T Y, Piao X F, Xie W Y and Huang S B 2012 Acta Phys. Sin. 61 170512 (in Chinese)
[22] Nie S, Wang X, Zhang H, Li Q and Wang B 2014 PLoS ONE 9e89066
[23] Pu C L, Pei W J and Michaelson A R 2012 Physica A 391 4420
[24] Ruths J and Ruths D 2013 Complex Networks IV 185
[25] Schneider C M, Moreira A A, Andrade J S, Havlin S and Herrmann H J 2011 Proc. Natl. Acad. Sci. USA 108 3838
[26] Newman M E 2003 SIAM Rev. 45 167
[27] Hu H B and Wang X F 2008 Physica A 387 3769
[28] Newman M E 2002 Phys. Rev. Lett. 89 208701
[29] Newman M E 2003 Phys. Rev. E 67 026126
[30] Foster J G, Foster D V, Grassberger P and Paczuski M 2010 Proc. Natl. Acad. Sci. USA 107 10815
[31] Hou L L, Lao S Y, Bu J and Bai L 2013 Proceedings of IEEE International Conference on Intelligent System Design and Engineering Applications (Hong Kong) p. 709
[32] Wu Z X and Holme P 2011 Phys. Rev. E 84 026106
[33] Pósfai M, Liu Y Y, Slotine J J and Barabási A L 2013 Sci. Rep. 3 1067
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[4] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[5] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[6] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[7] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[8] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[9] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[10] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[11] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[12] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[13] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[14] An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance
Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚). Chin. Phys. B, 2014, 23(6): 064201.
[15] An LCOR model for suppressing cascading failure in weighted complex networks
Chen Shi-Ming (陈世明), Pang Shao-Peng (庞少鹏), Zou Xiao-Qun (邹小群). Chin. Phys. B, 2013, 22(5): 058901.
No Suggested Reading articles found!