Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118402    DOI: 10.1088/1674-1056/23/11/118402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Memristance controlling approach based on modification of linear M-q curve

Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Yu Hong-Qi (于红旗), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山)
College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The memristor has broad application prospects in many fields, while in many cases, those fields require accurate impedance control. The nonlinear model is of great importance for realizing memristance control accurately, but the implementing complexity caused by iteration has limited the actual application of this model. Considering the approximate linear characteristics at the middle region of the memristance-charge (M-q) curve of the nonlinear model, this paper proposes a memristance controlling approach, which is achieved by linearizing the middle region of the M-q curve of the nonlinear memristor, and establishes the linear relationship between memristances M and input excitations so that it can realize impedance control precisely by only adjusting input signals briefly. First, it analyzes the feasibility for linearizing the middle part of the M-q curve of the memristor with a nonlinear model from the qualitative perspective. Then, the linearization equations of the middle region of the M-q curve is constructed by using the shift method, and under a sinusoidal excitation case, the analytical relation between the memristance M and the charge time t is derived through the Taylor series expansions. At last, the performance of the proposed approach is demonstrated, including the linearizing capability for the middle part of the M-q curve of the nonlinear model memristor, the controlling ability for memristance M, and the influence of input excitation on linearization errors.
Keywords:  memristor      memristive system      linear model      nonlinear model  
Received:  07 March 2014      Revised:  12 May 2014      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  85.35.-p (Nanoelectronic devices)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171017).
Corresponding Authors:  Liu Hai-Jun, Li Zhi-Wei     E-mail:  liuhaijun@nudt.edu.cn;lzw89523@gmail.com

Cite this article: 

Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Yu Hong-Qi (于红旗), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山) Memristance controlling approach based on modification of linear M-q curve 2014 Chin. Phys. B 23 118402

[1] Slipko V A, Pershin Y V and Di Ventra M 2013 Phys. Rev. E 87 042103
[2] Liu H J, Li Z W, Bu K, Sun Z L and Nie H S 2014 Chin. Phys. B 23 048401
[3] Li Z W, Liu H J and Xu X 2013 Acta Phys. Sin. 62 96401 (in Chinese)
[4] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[5] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[6] Jung C, Choi J and Min K 2012 IEEE Trans. Nanotechnol. 11 611
[7] Eshraghian K, Kyoung-Rok C, Kavehei O, Soon-Ku K, Abbott D and Sung-Mo S K 2011 IEEE Transactions on Very Large Scale Integration Systems 19 1407
[8] Iu H H C, Yu D S, Fitch A L, Sreeram V and Chen H 2011 IEEE Trans. Circ. Sys. 58 1337
[9] Bao B C, Hu W, Xu J P, Liu Z and Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese)
[10] Sun J, Shen Y, Zhang G, Wang Y and Cui G 2013 Chin. Phys. B 22 040508
[11] Kim H, Sah M, Yang C, Roska T and Chua L O 2012 IEEE Trans. Circ. Sys. 59 148
[12] Howard G, Gale E, Bull L, de Lacy Costello B and Adamatzky A 2012 IEEE Transactions on Evolutionary Computation 16 711
[13] Tian X B and Xu H 2013 Chin. Phys. B 22 088501
[14] Pershin Y V and Di Ventra M 2010 IEEE Trans. Circ. Sys. 57 1857
[15] Shin S, Kim K and Kang S M 2012 Electron. Lett. 48 78
[16] Merrikh-Bayat F, Shouraki S B and Rohani A 2011 IEEE Transactions on Fuzzy Systems 19 1083
[17] Strukov D B, Alibart F and Williams R S 2012 Appl. Phys. A 107 509
[18] Yang Y, Gao P, Gaba S, Chang T, Pan X and Lu W 2012 Nat. Commun. 3 732
[19] Tian X B, Xu H and Li Q J 2013 Chin. Phys. B 22 088502
[20] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[21] Prodromakis T, Boon P P, Papavassiliou C and Toumazou C 2011 IEEE Transactions on Electron Devices 58 3099
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!