Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118101    DOI: 10.1088/1674-1056/23/11/118101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tri-band transparent cross-polarization converters using a chiral metasurface

Shi Hong-Yu (施宏宇)a, Li Jian-Xing (李建星)a, Zhang An-Xue (张安学)a, Wang Jia-Fu (王甲富)b, Xu Zhuo (徐卓)c
a School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
b College of Science, Air Force Engineering University, Xi'an 710051, China;
c Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.

Keywords:  multi-band      polarization angle independent      optical activity      chiral metamaterials  
Received:  22 April 2014      Revised:  14 May 2014      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 61001039, and 41390454).

Corresponding Authors:  Zhang An-Xue     E-mail:  anxuezhang@mail.xjtu.edu.cn

Cite this article: 

Shi Hong-Yu (施宏宇), Li Jian-Xing (李建星), Zhang An-Xue (张安学), Wang Jia-Fu (王甲富), Xu Zhuo (徐卓) Tri-band transparent cross-polarization converters using a chiral metasurface 2014 Chin. Phys. B 23 118101

[1] Francesco M and Alu A 2014 Chin. Phys. B 23 47809
[2] He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J and Zhou L 2014 Chin. Phys. B 23 47808
[3] Cui T J, Smith D R and Liu R 2010 Metamaterials Theory, Design, and Applications (New York: London: Springer)
[4] Landy N and Smith D R 2013 Nat. Mater. 12 25
[5] Xu H X, Wang G M, Qi M Q, Lv Y Y and Gao X 2013 Appl. Phys. Lett. 102 193502
[6] Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 067801
[7] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802
[8] Lu L, Qu S B, Su X, Shang Y B, Zhang J Q and Bai P 2013 Acta Phys. Sin. 62 153301 (in Chinese)
[9] Lu L, Qu S B, Shi H Y, Zhang A X, Zhang J Q and Ma H 2013 Acta Phys. Sin. 62 208103 (in Chinese)
[10] Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Lett. 36 1653
[11] Zhao Y and Alu A 2011 Photonic and Phononic Properties of Engineered Nanostructures (San Francisco: SPIE)
[12] Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
[13] Yu N F and Capasso F 2014 Nat. Mater. 13 139
[14] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[15] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[16] Zhu L, Meng F Y, Dong L, Fu J H, Zhang F and Wu Q 2013 Opt. Express 21 32099
[17] Shi H, Zheng S, Zhang A and Jiang Y 2013 Frequenz 68 271
[18] Liu D Y, Luo X Y, Liu J J and Dong J F 2013 Chin. Phys. B. 22 124202
[19] Zuo Y, Shen Z X and Feng Y J 2014 Chin. Phys. B 23 34101
[20] Ye Y Q and He S 2010 Appl. Phys. Lett. 96 203501
[21] Shi H, Zhang A, Zheng S, Li J and Jiang Y 2014 Appl. Phys. Lett. 104 034102
[22] Li Z F, Mutlu M and Ozbay E 2013 J. Opt. 15 023001
[23] Chuss D T, Wollack E J, Pisano G, Ackiss S, U-Yen K and Ng M W 2012 Appl. Opt. 51 6824
[24] Mutlu M and Ozbay E 2012 Appl. Phys. Lett. 100 051909
[25] Huang C, Ma X L, Pu M B, Yi G W, Wang Y Q and Luo X G 2013 Opt. Commun. 291 345
[26] Pfeiffer C and Grbic A 2013 Appl. Phys. Lett. 102 231116
[27] Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A-Mater 111 209
[28] Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J Electromagnet Wave 27 1850
[29] Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F and Cui T J 2013 Appl. Phys. Lett. 102 191905
[30] Wang B, Zhou J, Koschny T, Kafesaki M and Soukoulis C M 2009 Journal of Optics A-Pure and Applied Optics 11 114003
[31] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
[1] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[2] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[3] Charge disturbance/excitation in the Raman virtual state revealed by ROA signal: A case study of pinane
Ziqi Zhu(祝子祺), Peijie Wang(王培杰), and Guozhen Wu(吴国祯). Chin. Phys. B, 2021, 30(6): 063101.
[4] Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface
Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇). Chin. Phys. B, 2021, 30(12): 127803.
[5] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[6] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[7] Compact high-order quint-band superconducting band-pass filter
Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068503.
[8] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[9] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[10] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[11] Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator
Li Li-Yang (李立扬), Wang Jun (王军), Du Hong-Liang (杜红亮), Wang Jia-Fu (王甲富), Qu Shao-Bo (屈绍波). Chin. Phys. B, 2015, 24(6): 064201.
[12] Multi-band circular polarizer based on a twisted triplesplit-ring resonator
Wu Song (吴松), Huang Xiao-Jun (黄晓俊), Xiao Bo-Xun (肖柏勋), Jin Yan (金彦), Yang He-Lin (杨河林). Chin. Phys. B, 2014, 23(12): 127805.
[13] Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
Wang Guo-Dong (王国栋), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), Kong Ling-Hua (孔令华), Cheng Li-Li (程莉莉), Chen Zhao-Quan (陈兆权). Chin. Phys. B, 2014, 23(1): 017802.
[14] A planar chiral nanostructure with asymmetric transmission of linearly polarized wave and huge optical activity in near-infrared band
Liu Dao-Ya (刘道亚), Luo Xiao-Yang (罗孝阳), Liu Jin-Jing (刘锦景), Dong Jian-Feng (董建峰). Chin. Phys. B, 2013, 22(12): 124202.
[15] Enhanced Kerr nonlinearity in a left-handed three-level atomic system driven by a bichromatic field
Yang Xiao-Yu (杨晓雨), Jiang Yong-Yuan (姜永远). Chin. Phys. B, 2013, 22(11): 114204.
No Suggested Reading articles found!