INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Tri-band transparent cross-polarization converters using a chiral metasurface |
Shi Hong-Yu (施宏宇)a, Li Jian-Xing (李建星)a, Zhang An-Xue (张安学)a, Wang Jia-Fu (王甲富)b, Xu Zhuo (徐卓)c |
a School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
b College of Science, Air Force Engineering University, Xi'an 710051, China;
c Electronic Materials Research Laboratory, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.
|
Received: 22 April 2014
Revised: 14 May 2014
Accepted manuscript online:
|
PACS:
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 61001039, and 41390454). |
Corresponding Authors:
Zhang An-Xue
E-mail: anxuezhang@mail.xjtu.edu.cn
|
Cite this article:
Shi Hong-Yu (施宏宇), Li Jian-Xing (李建星), Zhang An-Xue (张安学), Wang Jia-Fu (王甲富), Xu Zhuo (徐卓) Tri-band transparent cross-polarization converters using a chiral metasurface 2014 Chin. Phys. B 23 118101
|
[1] |
Francesco M and Alu A 2014 Chin. Phys. B 23 47809
|
[2] |
He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J and Zhou L 2014 Chin. Phys. B 23 47808
|
[3] |
Cui T J, Smith D R and Liu R 2010 Metamaterials Theory, Design, and Applications (New York: London: Springer)
|
[4] |
Landy N and Smith D R 2013 Nat. Mater. 12 25
|
[5] |
Xu H X, Wang G M, Qi M Q, Lv Y Y and Gao X 2013 Appl. Phys. Lett. 102 193502
|
[6] |
Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 067801
|
[7] |
Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802
|
[8] |
Lu L, Qu S B, Su X, Shang Y B, Zhang J Q and Bai P 2013 Acta Phys. Sin. 62 153301 (in Chinese)
|
[9] |
Lu L, Qu S B, Shi H Y, Zhang A X, Zhang J Q and Ma H 2013 Acta Phys. Sin. 62 208103 (in Chinese)
|
[10] |
Mutlu M, Akosman A E, Serebryannikov A E and Ozbay E 2011 Opt. Lett. 36 1653
|
[11] |
Zhao Y and Alu A 2011 Photonic and Phononic Properties of Engineered Nanostructures (San Francisco: SPIE)
|
[12] |
Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
|
[13] |
Yu N F and Capasso F 2014 Nat. Mater. 13 139
|
[14] |
Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
|
[15] |
Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
|
[16] |
Zhu L, Meng F Y, Dong L, Fu J H, Zhang F and Wu Q 2013 Opt. Express 21 32099
|
[17] |
Shi H, Zheng S, Zhang A and Jiang Y 2013 Frequenz 68 271
|
[18] |
Liu D Y, Luo X Y, Liu J J and Dong J F 2013 Chin. Phys. B. 22 124202
|
[19] |
Zuo Y, Shen Z X and Feng Y J 2014 Chin. Phys. B 23 34101
|
[20] |
Ye Y Q and He S 2010 Appl. Phys. Lett. 96 203501
|
[21] |
Shi H, Zhang A, Zheng S, Li J and Jiang Y 2014 Appl. Phys. Lett. 104 034102
|
[22] |
Li Z F, Mutlu M and Ozbay E 2013 J. Opt. 15 023001
|
[23] |
Chuss D T, Wollack E J, Pisano G, Ackiss S, U-Yen K and Ng M W 2012 Appl. Opt. 51 6824
|
[24] |
Mutlu M and Ozbay E 2012 Appl. Phys. Lett. 100 051909
|
[25] |
Huang C, Ma X L, Pu M B, Yi G W, Wang Y Q and Luo X G 2013 Opt. Commun. 291 345
|
[26] |
Pfeiffer C and Grbic A 2013 Appl. Phys. Lett. 102 231116
|
[27] |
Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A-Mater 111 209
|
[28] |
Cheng Y Z, Nie Y, Cheng Z Z, Wu L, Wang X and Gong R Z 2013 J Electromagnet Wave 27 1850
|
[29] |
Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F and Cui T J 2013 Appl. Phys. Lett. 102 191905
|
[30] |
Wang B, Zhou J, Koschny T, Kafesaki M and Soukoulis C M 2009 Journal of Optics A-Pure and Applied Optics 11 114003
|
[31] |
Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|