Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107807    DOI: 10.1088/1674-1056/23/10/107807
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires

Wu Ping (吴平)a, Xu Wen (徐文)a b, Li Long-Long (李龙龙)a, Lu Tie-Cheng (卢铁城)c, Wu Wei-Dong (吴卫东)d
a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
b Department of Physics, Yunnan University, Kunming 650091, China;
c Department of Physics, Sichuan University, Chengdu 610064, China;
d Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  We present a theoretical study on collective excitation modes associated with plasmon and surface-plasmon oscillations in cylindrical metallic nanowires. Based on a two-subband model, the dynamical dielectric function matrix is derived under the random-phase approximation. An optic-like branch and an acoustic-like branch, which are free of Landau damping, are observed for both plasmon and surface-plasmon modes. Interestingly, for surface-plasmon modes, we find that two branches of the dispersion relation curves converge at a wavevector qz=qmax beyond which no surface-plasmon mode exists. Moreover, we examine the dependence of these excitation modes on sample parameters such as the radius of the nanowires. It is found that in metallic nanowires realized by state-of-the-art nanotechnology the intra-and inter-subband plasmon and surface-plasmon frequencies are in the terahertz bandwidth. The frequency of the optic-like modes decreases with increasing radius of the nanowires, whereas that of the acoustic-like modes is not sensitive to the variation of the radius. This study is pertinent to the application of metallic nanowires as frequency-tunable terahertz plasmonic devices.
Keywords:  metallic nanowires      collective excitations      terahertz  
Received:  16 February 2014      Revised:  22 April 2014      Accepted manuscript online: 
PACS:  78.67.Uh (Nanowires)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the Funds from the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Funds from the Department of Science and Technology of Yunnan Province, the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201303), the Joint Research Fund from Sichuan University and China Academy of Engineering Physics, and the Funds from the Chinese Academy of Sciences (Grant No. YZ201223).
Corresponding Authors:  Xu Wen     E-mail:  wenxu_issp@aliyun.com
About author:  78.67.Uh; 73.20.Mf

Cite this article: 

Wu Ping (吴平), Xu Wen (徐文), Li Long-Long (李龙龙), Lu Tie-Cheng (卢铁城), Wu Wei-Dong (吴卫东) Terahertz plasmon and surface-plasmon modes in cylindrical metallic nanowires 2014 Chin. Phys. B 23 107807

[1]Lal S, Hafner J H, Halas N J, Link S and Nordlander P 2012 ACC Chem. Res. 45 1887
[2]Fan X X, Hu H N, Zhou S M, Yang M, Du J and Shi Z 2012 Chin. Phys. Lett. 29 077802
[3]Lee J Y, Connor S T, Cui Y and Peumans P 2008 Nano Lett. 8 689
[4]Ozbay E 2006 Science 311 189
[5]Li Z P, Zhang S P, Halas N J, Nordlander P and Xu H X 2011 Small 7 593
[6]Zhu Y, Wei H, Yang P F and Xu H X 2012 Chin. Phys. Lett. 29 077302
[7]Egeler T, Abstreiter G, Weimann G, Demel T, Heitmann D, Grambow P and Schlapp W 1990 Phys. Rev. Lett. 65 1804
[8]Demel T, Heitmann D, Grambow P and Ploog K 1991 Phys. Rev. Lett. 66 2657
[9]Huang F Y 1990 Phys. Rev. B 41 12957
[10]Wendler L and Grigoryan V G 1994 Phys. Rev. B 49 14531
[11]Xu S H, Fei G T, Zhu X G, Wang B, Wu B and Zhang L D 2011 Nanotechnology 22 265602
[12]Zhou W F, Fei G T, Li X F, Xu S H, Chen L, Wu B and Zhang L D 2009 J. Phys. Chem. C 113 9568
[13]Yang Y W, Li T Y, Zhu W B, Ma D M and Chen D 2013 Chin. Phys. Lett. 30 108102
[14]Liu J, Duan J L, Toimil-Molares M E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G and Neumann R 2006 Nanotechnology 17 1922
[15]Xu W, Das M D and Lin L B 2003 J. Phys.: Condens. Matter 15 3249
[16]Xiao Y M, Xu W, Zhang Y Y and Hu J G 2012 Nanoscale Res. Lett. 7 578
[17]Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[18]Kawase K, Ogawa Y and Watanabe Y 2003 Opt. Express 11 2549
[19]Polyushkin D K, Hendry E, Stone E K and Barnes W L 2011 Nano. Lett. 11 4718
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!