Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107306    DOI: 10.1088/1674-1056/23/10/107306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of different dopants on switching behavior of HfO2-based resistive random access memory

Deng Ning (邓宁)a b, Pang Hua (庞华)a b, Wu Wei (吴畏)a b
a Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
b Innovation Center for MicroNanoelectronics and Integrated System, Beijing 100871, China
Abstract  In this study the effects of doping atoms (Al, Cu, and N) with different electro-negativities and ionic radii on resistive switching of HfO2-based resistive random access memory (RRAM) are systematically investigated. The results show that forming voltages and set voltages of Al/Cu-doped devices are reduced. Among all devices, Cu-doped device shows the narrowest device-to-device distributions of set voltage and low resistance. The effects of different dopants on switching behavior are explained with deferent types of CFs formed in HfO2 depending on dopants: oxygen vacancy (Vo) filaments for Al-doped HfO2 devices, hybrid filaments composed of oxygen vacancies and Cu atoms for Cu-doped HfO2 devices, and nitrogen/oxygen vacancy filaments for N-doped HfO2 devices. The results suggest that a metal dopant with a larger electro-negativity than host metal atom offers the best comprehensive performance.
Keywords:  RRAM      conductive filament      doping  
Received:  04 July 2014      Revised:  04 August 2014      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
  85.35.-p (Nanoelectronic devices)  
  85.90.+h (Other topics in electronic and magnetic devices and microelectronics)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA010403).
Corresponding Authors:  Deng Ning     E-mail:  ningdeng@tsinghua.edu.cn
About author:  73.40.Ns; 85.35.-p; 85.90.+h

Cite this article: 

Deng Ning (邓宁), Pang Hua (庞华), Wu Wei (吴畏) Effects of different dopants on switching behavior of HfO2-based resistive random access memory 2014 Chin. Phys. B 23 107306

[1]Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Proc. IEEE 100 1951
[1]Maex K, Baklanov M R, Shamiryan D, Iacopi F, Brongersma and Yanovitskaya Z S 2003 J. Appl. Phys. 93 8793
[2]McGahay V 2010 Materials 3 536
[2]Jeong D S, Thomas R, Katiyar RS, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
[3]van Driel W D 2007 Microelectron. Reliab. 47 1969
[3]Yu S, Jeyasingh R, Yu Y and Wong H S P 2012 Phys. Rev. B 85 045324
[4]Xing Z W 2011 Chin. Phys. B 20 097703
[5]Liu Q, Guan W H, Long S B, Jia R and Liu M 2008 Appl. Phys. Lett. 92 012117
[4]Hoofman R J O M, Michelon J, Bancken P H L, Daamen R, Verheijden G J A M, Arnal V, Hinsinger O, Gosset L G, Humbert A, Besling W F A, Goldberg C, Fox R, Michaelson L, Guedj C, Guillaumond J F, Jousseaume V, Arnaud L, Gravesteijn D J, Torres J and Passemard G 2005 Proceedings of the IEEE 2005 International Interconnect Technology Conference, June 6-8, 2005, California, USA, p. 85
[6]Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J and Liu M 2009 IEEE Electron. Dev. Lett. 30 1335
[5]Herbert E G, Tenhaeff W E, Dudney N J and Pharr G M 2011 Thin Solid Films 520 413
[7]Wu Y T, Jou S and Yang P J 2013 Thin Solid Films 544 24
[6]Wittkowski T, Jorzick J, Jung K, Hillebrands B, Keunecke M and Bewilogua K 2002 J. Appl. Phys. 91 2729
[8]Zhao L and Park S 2013 Appl. Phys. Lett. 102 083506
[9]Pang H and Deng N 2014 Acta Phys. Sin. 63 147301 (in Chinese)
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[5] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[14] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[15] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
No Suggested Reading articles found!