Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107305    DOI: 10.1088/1674-1056/23/10/107305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of shape of terminus on excitation of surfaceplasmon modes on metal nanowires

Qiao Ya-Nan (乔雅楠), Yang Shu (杨树)
Department of Physics, School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The effects of the shape of a nanowire terminus on the excited surface plasmon polariton (SPP) modes are investigated. The conical terminus and terminus cut at a certain angle are studied. For the first time, the quantitative mode decompositions are carried out to derive the full information about excited SPP modes. It is demonstrated that tuning the shape of the terminus provides an effective method to control the composition of excited SPP modes on metal nanowires. It is especially found that some important patterns, such as the pure TM0 mode and the superposition of TM0 and HE+1 or HE-1 modes, can be generated by some specific shapes of the terminus, whereas there is no way to produce these patterns using flat-end nanowires.
Keywords:  metal nanowire      shape of terminus      surface plasmon polariton modes      mode decomposition  
Received:  20 December 2013      Revised:  18 March 2014      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Et (Waveguides, couplers, and arrays)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923202).
Corresponding Authors:  Yang Shu     E-mail:  syang@bupt.edu.cn
About author:  73.20.Mf; 42.82.Et; 81.07.Gf

Cite this article: 

Qiao Ya-Nan (乔雅楠), Yang Shu (杨树) Effects of shape of terminus on excitation of surfaceplasmon modes on metal nanowires 2014 Chin. Phys. B 23 107305

[1]Maier S 2007 Plasmonics Fundamentals and Applications (Berlin: Springer) ed. Brongersma Mark L and Kik Pieter G 2007 Surface Plasmon Nanophotonics (Berlin: Springer)
[2]Pile D F P and Gramotnev D K 2004 Opt. Lett. 29 1069
[3]Liu L, Han Z H and He S 2005 Opt. Express 13 6645
[4]Feng N N, Brongersma M L and Negro L D 2007 J. Quantum Electron. 43 479
[5]Wang B and Wang G P 2007 Appl. Phys. Lett. 90 13114
[6]Kumar A and Srivastava T 2008 Opt. Lett. 33 333
[7]Oulton R F, Sorger V, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[8]Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[9]Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[10]Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
[11]Li Z P, Hao F, Huang Y Z, Fang Y R, Nordlander P and Xu H X 2009 Nano Lett. 9 4383
[12]Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R and Wang M 2013 Sci. Rep. 3 3095
[13]Xiong X, Zou C, Ren X, Liu A, Ye Y, Sun F and Guo G 2013 Laser Photon. Rev. 7 1
[14]Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[15]Yang S and Pan C, Mode excitation of surface plasmon polaritons on metal nanowires, to be submitted.
[16]Li Z P, Bao K, Fang Y R, Huang Y Z, Nordlander P and Xu H X 2010 Nano Lett. 10 1831
[17]Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačíc M, Jacobs S A, Joannopoulos J D and Fink Y 2001 Opt. Express 9 748
[18]Hu Q, Zhao J Z, Peng R W, Gao F, Zhang R L and Wang M 2010 Appl. Phys. Lett. 96 161101
[19]Zhang S, Wei H, Bao K, Håkanson U, Halas N J, Nordlander P and Xu H 2011 Phys. Rev. Lett. 107 096801
[1] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[2] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[3] Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment
Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson. Chin. Phys. B, 2017, 26(6): 064301.
[4] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
Wen-Bo Wang(王文波), Xiao-Dong Zhang(张晓东), Yuchan Chang(常毓禅), Xiang-Li Wang(汪祥莉), Zhao Wang(王钊), Xi Chen(陈希), Lei Zheng(郑雷). Chin. Phys. B, 2016, 25(1): 010202.
[5] Stability analysis for flow past a cylinder via lattice Boltzmann method and dynamic mode decomposition
Zhang Wei (张伟), Wang Yong (王勇), Qian Yue-Hong (钱跃竑). Chin. Phys. B, 2015, 24(6): 064701.
[6] A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition
Fu Mao-Jing(符懋敬), Zhuang Jian-Jun(庄建军), Hou Feng-Zhen(侯凤贞), Zhan Qing-Bo(展庆波),Shao Yi(邵毅), and Ning Xin-Bao(宁新宝). Chin. Phys. B, 2010, 19(5): 058701.
[7] Sensitivity of intrinsic mode functions of Lorenz system to initial values based on EMD method
Zou Ming-Wei (邹明玮), Feng Guo-lin (封国林), Gao Xin-Quan (高新全). Chin. Phys. B, 2006, 15(6): 1384-1390.
[8] On the climate prediction of nonlinear and non-stationary time series with the EMD method
Wan Shi-Quan (万仕全), Feng Guo-Lin (封国林), Dong Wen-Jie (董文杰), Li Jian-Ping (李建平), Gao Xin-Quan (高新全), He Wen-Ping (何文平). Chin. Phys. B, 2005, 14(3): 628-633.
[9] Mode correlation and coherent-mode decomposition of laser beams
Zhang Bin (张彬), Wen Qiao (文侨), Chu Xiao-Liang (楚晓亮). Chin. Phys. B, 2003, 12(9): 981-985.
No Suggested Reading articles found!