Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 099501    DOI: 10.1088/1674-1056/23/9/099501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Polarized radiative transfer considering thermal emission in semitransparent media

Ben Xun (贲勋), Yi Hong-Liang (易红亮), Tan He-Ping (谈和平)
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The characteristics of the polarization must be considered for a complete and correct description of radiation transfer in a scattering medium. Observing and identifying the polarizition characteristics of the thermal emission of a hot semitransparent medium have a major significance to analyze the optical responses of the medium for different temperatures. In this paper, a Monte Carlo method is developed for polarzied radiative transfer in a semitransparent medium. There are mainly two kinds of mechanisms leading to polarization of light: specular reflection on the Fresnel boundary and scattering by particles. The determination of scattering direction is the key to solve polarized radiative transfer problem using the Monte Carlo method. An optimized rejection method is used to calculate the scattering angles. In the model, the treatment of specular reflection is also considered, and in the process of tracing photons, the normalization must be applied to the Stokes vector when scattering, reflection, or transmission occurs. The vector radiative transfer matrix (VRTM) is defined and solved using Monte Carlo strategy, by which all four Stokes elements can be determined. Our results for Rayleigh scattering and Mie scattering are compared well with published data. The accuracy of the developed Monte Carlo method is shown to be good enough for the solution to vector radiative transfer. Polarization characteristics of thermal emission in a hot semitransparent medium is investigated, and results show that the U and V parameters of Stokes vector are equal to zero, an obvious peak always appear in the Q curve instead of the I curve, and refractive index has a completely different effect on I from Q.
Keywords:  radiative transfer      thermal emission      polarization      Monte Carlo  
Received:  13 December 2013      Revised:  31 March 2014      Accepted manuscript online: 
PACS:  95.30.Jx (Radiative transfer; scattering)  
  42.68.Mj (Scattering, polarization)  
  44.40.+a (Thermal radiation)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004) and the National Natural Science Foundation of China (Grant No. 51176040).
Corresponding Authors:  Yi Hong-Liang, Tan He-Ping     E-mail:  yihongliang@hit.edu.cn;tanheping@hit.edu.cn

Cite this article: 

Ben Xun (贲勋), Yi Hong-Liang (易红亮), Tan He-Ping (谈和平) Polarized radiative transfer considering thermal emission in semitransparent media 2014 Chin. Phys. B 23 099501

[1] Yuan Y, Sun C M, Huang F Z, Zhao H J and Wang Q 2011 Acta Phys. Sin. 60 089501 (in Chinese)
[2] Sun C M, Yuan Y and Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese)
[3] Kattawar G W and Plass G N 1968 Appl. Opt. 7 1519
[4] Garcia R D M and Siewert C E 1989 J. Quant. Spectrosc. Radiar. Transfer 41 117
[5] Evans K F and Stephens G L 1991 J. Quant. Spectrosc. Radiar. Transfer 46 413
[6] Weng F 1992 J. Quant. Spectrosc. Radiar. Transfer 47 19
[7] Haferman J L, Smith T F and Krajewski W F 1997 J. Quant. Spectrosc. Radiar. Transfer 58 379
[8] Siewert C E 2000 J. Quant. Spectrosc. Radiar. Transfer 64 227
[9] Sun B, Wang H, Sun X B, S, Hong J and Zhang Y J 2012 Chin. Phys. B 21 129501
[10] Kattawar G W and Adams C N 1989 Limnol. Oceanogr 34 1453
[11] Wang X D, Wang L V, Sun C W and Yang C C 2003 J. Biomed. Opt. 8 608
[12] Vaillona R, Wongb B T and Mengüç M P 2004 J. Quant. Spectrosc. Radiar. Transfer 84 383
[13] Ramella-Roman J C, Prahl S A and Jacques S L 2005 Opt. Express 13 4420
[14] Davis C, Emde C and Harwood R 2005 IEEE Trans. Geosci. Rem. Sens. 43 1096
[15] Côté D and Vitkin I A 2005 Opt. Express 13 148
[16] Gay B, Vaillon R and Mengüç M P 2010 J. Quant. Spectrosc. Radiar. Transfer 111 287
[17] Chandrasekhar S 1950 Radiative Transfer (Oxford: Oxford University Press)
[18] Van de Hulst H C 1981 Light Scattering by Small Particles (New York: Dover)
[19] Mishchenko M I, Travis L D and Lacis A A 2002 Scattering, Absorption, and Emisson of Light by Small Particles (New York: Cambridge University)
[20] Tynes H H, Kattawar G W, Zege E P, Katsev I L, Prikhach A S and Chaikovskaya L I 2001 Appl. Opt. 40 400
[21] Green R 1985 Spherical Astronomy (Cambridge: Cambridge University Press)
[22] Cornet C, Labonnote L C and Szczap F 2010 J. Quant. Spectrosc. Radiar. Transfer 111 174
[23] Whitney B A 2011 arXiv:1104.4990
[24] Masuda K and Takashima 1986 Pap. Met. Geophys. 37 1
[25] Kattawar G W and Adams C N 1989 Limnol. Oceanogr. 34 1453
[26] Zhai P W, Hu Y X, Cdhary J, Trepte C R, Lucker P L and Josset D B 2010 J. Quant. Spectrosc. Radiar. Transfer 111 1025
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!