Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097701    DOI: 10.1088/1674-1056/23/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dielectric and ferroelectric properties of Sr4CaSmTi3Nb7O30 with tetragonal tungsten bronze structure

Gong Gao-Shang (龚高尚), Fang Yu-Jiao (方玉娇), Huang Shuai (黄帅), Yin Chong-Yang (尹重阳), Yuan Song-Liu (袁松柳), Wang Li-Guang (王丽光)
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Sr4CaSmTi3Nb7O30 ceramics are synthesized and indexed as tetragonal tungsten bronze structure. The dielectric behavior and ferroelectric nature are investigated. Three dielectric anomalies are observed. The phase transition is a displacive phase transition with some diffusive characteristics, which indicates possible compositional variations within the materials on the microscopic scale. The weak distortion disappears in cooling process for differential scanning calorimetry measurement, and the large depression of Curie-Weiss temperature T0 indicates the difficulty in forming macroferroelectric domain. The ferroelectric nature in these filled tungsten bronze niobates originates from the off-center displacement of B-site cations, but they are primarily dominated by A-site cation occupation. Both the radius and the valence of A1-site cations play an important role on ferroelectric properties of the filled tungsten bronze compounds. Existence of spontaneous polarization with a remanent polarization of 0.16 μC/cm2 a coercive field of Ec=11.74 kV/cm confirms the room-temperature ferroelectric nature of Sr4CaSmTi3Nb7O30 ceramics.
Keywords:  dielectric      phase transition      ferroelectric      relaxation  
Received:  03 January 2014      Revised:  04 March 2014      Accepted manuscript online: 
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  77.80.B- (Phase transitions and Curie point)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.22.Gm (Dielectric loss and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174092 and 51002060).
Corresponding Authors:  Yuan Song-Liu     E-mail:  yuansl@hust.edu.cn

Cite this article: 

Gong Gao-Shang (龚高尚), Fang Yu-Jiao (方玉娇), Huang Shuai (黄帅), Yin Chong-Yang (尹重阳), Yuan Song-Liu (袁松柳), Wang Li-Guang (王丽光) Dielectric and ferroelectric properties of Sr4CaSmTi3Nb7O30 with tetragonal tungsten bronze structure 2014 Chin. Phys. B 23 097701

[1] Parida B N and Das P R 2014 J. Alloy. Comp. 585 234
[2] Ryu J, Carazo A V, Uchino K and Kim H E 2001 J. Electroceram. 7 17
[3] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[4] Zhu X L and Chen X M 2014 Chin. Phys. Lett. 31 015201
[5] Zheng X H and Chen X M 2003 Solid State Commun. 125 449
[6] Sun Y H, Chen X M and Zheng X H 2004 J. Appl. Phys. 96 7435
[7] Stennett M C, Reaney I M, Miles G C, Woodward D I, West A R, Kirk C A and Levin I 2007 J. Appl. Phys. 101 104114
[8] Levin I, Stennett M C, Miles G C, Woodward D I, West A R and Reaney I M 2006 Appl. Phys. Lett. 89 122908
[9] Kamba S, Veljko S, Kempa M, Savinov M, Bovtun V, Vaněk P, Petzelt J, Stennett M C, Reaney I M and West A R 2005 J. Eur. Ceram. Soc. 25 3069
[10] Zhu X L, Chen X M and Li X G 2007 Appl. Phys. Lett. 90 182905
[11] Zhu X L and Chen X M 2012 J. Appl. Phys. 111 044104
[12] Kirk C A, Stennett M C, Reaney I M and West A R 2002 J. Mater. Chem. 12 2609
[13] Simon A and Ravez J 2006 C. R. Chimie 9 1268
[14] Li K, Zhu X L, Liu X Q and Chen X M 2012 Appl. Phys. Lett. 100 012902
[15] Zhu X L, Li K, Rafiq M A, Liu X Q and Chen X M 2013 J. Appl. Phys. 114 124102
[16] Zhu X L, Wu S Y and Chen X M 2007 Appl. Phys. Lett. 91 162906
[17] Li K, Zhu X L, Liu X Q and Chen X M 2012 Appl. Phys. Lett. 101 042906
[18] Hu Q C, Chen Y Q, Lü P W, Huang F and Wang X 2014 Chin. Phys. B 23 026402
[19] Zhu X L and Chen X M 2010 Appl. Phys. Lett. 96 032901
[20] Tan Y Q, Yu Y, Hao Y M, Dong S Y and Yang Y W 2013 Mater. Res. Bul. 48 1934
[21] Wu Y J, Gua S P, Wang N, Chen X M and Li J 2012 Mater. Chem. Phys. 132 476
[22] Zhu X L, Chen X M and Liu X Q 2008 J. Mater. Res. 23 3112
[23] Uchino K and Nomura S 1982 Ferroelectrics 44 55
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[5] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[6] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[9] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[10] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[11] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[12] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[13] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[14] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!