INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen |
Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣) |
Key Laboratory of Luminescence and Optical Information of the Ministry of Education, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca)3phen ultrathin films. The modification of the Tb(aca)3phen ultrathin film between the indium tin oxide (ITO) anode and the PEDOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (Jsc). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca)3phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca)3phen ultrathin film. The ultraviolent-visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca)3phen in P3HT:PCBM solar cells led to about a 12% PCE increase.
|
Received: 19 December 2013
Revised: 17 March 2014
Accepted manuscript online:
|
PACS:
|
88.40.jn
|
(Thin film Cu-based I-III-VI2 solar cells)
|
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Outstanding Youth Science Foundation of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073, 60877025, 61077044, and 91123025), the Beijing Natural Science Foundation, China (Grant No. 4132031), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012YJS116). |
Corresponding Authors:
Wang Yong-Sheng, He Da-Wei
E-mail: yshwang@bjtu.edu.cn;dwhe@bjtu.edu.cn
|
Cite this article:
Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣) Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen 2014 Chin. Phys. B 23 098802
|
[1] |
Zhu L R and Yang Y 2012 Nat. Photon. 6 153
|
[2] |
Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465
|
[3] |
Tang C W 1986 Appl. Phys. Lett. 48 183
|
[4] |
Brabec C J, Zerza G, Sariciftci N S, Cerullo G, Silvestri S De, Luzatti S and Hummelen J C 2001 Chem. Phys. Lett. 340 232
|
[5] |
Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
|
[6] |
Bao Z, Dodabalapur A and Lovinger A L 1996 Appl. Phys. Lett. 69 4108
|
[7] |
Salaneck W R, Inganas O, Themans B, Nilsson J O, Sjogren B, Osterholm J E, Breďas J L and Svensson S 1988 J. Chem. Phys. 89 4613
|
[8] |
Padinger F, Rittber R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
|
[9] |
Penmans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
|
[10] |
Mühlbacher D, Scharber M, Morana M, Zhu Z G, Waller D, Gaudiana R and Brabec C 2006 Adv. Mater. 18 2884
|
[11] |
Blouin N, Michaud A and Leclerc M 2007 Adv. Mater. 19 2295
|
[12] |
Kuwabara T, Kawahara Y, Yamaguchi T and Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107
|
[13] |
Zhang C F, Tong S W, Jiang C Y, Kang E T, Chan D S H and Zhu C X 2008 Appl. Phys. Lett. 93 043307
|
[14] |
Chan M Y, Lai S L, Fung M K, Lee C S and Lee S T 2007 Appl. Phys. Lett. 90 023504
|
[15] |
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
|
[16] |
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
|
[17] |
Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
|
[18] |
Moon J S, Takacs C J, Cho S, Coffin R C, Kim H, Bazan G C and Heeger A J 2010 Nano Lett. 10 4005
|
[19] |
Zhou H Q, Zhang Y, Seifter J, Collins S D, Luo C, Bazan G C, Nguyen T Q and Heeger A J 2013 Adv. Mater. 25 1646
|
[20] |
Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi W J, Yu Z S, Zhang Y H, Brian B and Ma Q Z 2013 Chin. Phys. B 22 018801
|
[21] |
He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J and Cao Y 2011 Adv. Mater. 23 4636
|
[22] |
Yang Q Q, Zhao S L, Xu Z, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F and Xu X R 2012 Chin. Phys. B 21 128402
|
[23] |
Benor A, Takizawa S Y, Perez-Bolivar C and Anzenbacher P 2010 Org. Electron. 11 938
|
[24] |
Zhang F J, Xu X W, Tang W H, Zhang J, Zhuo Z L, Wang J, Wang J, Xu Z and Wang Y S 2011 Sol. Energy Mater. Sol. Cells 95 1785
|
[25] |
Zhang F J, Sun F Y, Shi Y Z, Zhuo Z L, Lu L F, Zhao D W, Xu Z and Wang Y S 2010 Energy Fuels 24 3739
|
[26] |
Long Y B 2010 Sol. Energy Mater. Sol. Cells 94 744
|
[27] |
Shrotriya V, Li G, Yao Y, Chu C W and Yang Y 2006 Appl. Phys. Lett. 88 073508
|
[28] |
Li Y, Zhang D Q, Duan L, Zhang R, Wang L D and Qiu Y 2007 Appl. Phys. Lett. 90 012119
|
[29] |
Tachibana Y, Akiyama H Y and Kuwabata S 2007 Sol. Energy Mater. Sol. Cells 91 201
|
[30] |
Penzkofer A 2013 Chem. Phys. 415 173
|
[31] |
Brittain H G, Richardson F S and Martin R B 1976 J. Am. Chem. Soc. 98 8255
|
[32] |
Makoui A and Killinger D K 2009 J. Opt. Soc. Am. B 26 691
|
[33] |
Zhuo Z L, Zhang F J, Lv Y G, Xu Z, Lu L F, Li J M and Wang Y S 2010 Phys. Scripta 82 055703
|
[34] |
Fu Y, Zhang J, Lv Y and Cao W 2008 Spectro. Chim. Acta A 70 646
|
[35] |
Klonkowski A M, Lis S, Pietraszkiewicz M, Hnatejko Z, Czarnobaj K and Elbanowski M 2003 Chem. Mater. 15 656
|
[36] |
Velasco D S, de Moura A P, Medina A N, Baesso M L, Rubira A F and Cremona M 2010 J. Phys. Chem. B 114 5657
|
[37] |
Zhao D X, Hong Z R, Liang C J, Zhao D, Liu X Y, Li W L, Lee C S and Lee S T 2000 Thin Solid Films 363 208
|
[38] |
Moulton P F and Weber M J 1998 CRC Handbook of Laser Science and Technology, Lasers and Masers (Boca Raton: CRC Press) Vol. I p. 19
|
[39] |
Zhuo Z L, Zhang F J, Xu X W, Wang J, Lu L F and Xu Z 2011 Acta Phys. Chim. Sin. 27 875
|
[40] |
Baek W H, Yoon T S, Lee H H and Kim Y S 2010 Org. Electron. 11 933
|
[41] |
Kim H, So W W and Moon S J 2007 Sol. Energy Mater. Sol. Cells 91 581
|
[42] |
He Y J, Shao M, Xiao K, Smith S C and Hong K L 2013 Sol. Energy Mater. Sol. Cells 118 171
|
[43] |
Zhang F J, Zhuo Z L, Zhang J, Wang X, Xu X W, Wang Z X, Xin Y S, Wang J, Wang J, Tang W H, Z Xu and Y S Wang 2012 Sol. Energy Mater. Sol. Cells 97 71
|
[44] |
Park Y, Suh D W, Choi K S, Yoo J S, Hamb J, Lee J L and Kim S Y 2013 Org. Electron. 14 1021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|