Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098802    DOI: 10.1088/1674-1056/23/9/098802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen

Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣)
Key Laboratory of Luminescence and Optical Information of the Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
Abstract  The performance of P3HT:PCBM solar cells was improved by anode modification using spin-coated Tb(aca)3phen ultrathin films. The modification of the Tb(aca)3phen ultrathin film between the indium tin oxide (ITO) anode and the PEDOT:PSS layer resulted in a maximum power conversion efficiency (PCE) of 2.99% compared to 2.66% for the reference device, which was due to the increase in the short-circuit current density (Jsc). The PCE improvement could be attributed to the short-wavelength energy utilization and the optimized morphology of the active layers. Tb(aca)3phen with its strong down-conversion luminescence properties is suitable for the P3HT:PCBM blend active layer, and the absorption region of the ternary blend films is extended into the near ultraviolet region. Furthermore, the crystallization and the surface morphology of P3HT:PCBM films were improved with the Tb(aca)3phen ultrathin film. The ultraviolent-visible absorption spectra, atomic force microscope (AFM), and X-ray diffraction (XRD) of the films were investigated. Both anode modification and short-wavelength energy utilization using Tb(aca)3phen in P3HT:PCBM solar cells led to about a 12% PCE increase.
Keywords:  P3HT:PCBM      anode modification      polymer solar cells  
Received:  19 December 2013      Revised:  17 March 2014      Accepted manuscript online: 
PACS:  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  76.30.Kg (Rare-earth ions and impurities)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700 and 2011CB932703), the National Outstanding Youth Science Foundation of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073, 60877025, 61077044, and 91123025), the Beijing Natural Science Foundation, China (Grant No. 4132031), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012YJS116).
Corresponding Authors:  Wang Yong-Sheng, He Da-Wei     E-mail:  yshwang@bjtu.edu.cn;dwhe@bjtu.edu.cn

Cite this article: 

Zhuo Zu-Liang (卓祖亮), Wang Yong-Sheng (王永生), He Da-Wei (何大伟), Fu Ming (富鸣) Improved performance of P3HT:PCBM solar cells by both anode modification and short-wavelength energy utilization using Tb(aca)3phen 2014 Chin. Phys. B 23 098802

[1] Zhu L R and Yang Y 2012 Nat. Photon. 6 153
[2] Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465
[3] Tang C W 1986 Appl. Phys. Lett. 48 183
[4] Brabec C J, Zerza G, Sariciftci N S, Cerullo G, Silvestri S De, Luzatti S and Hummelen J C 2001 Chem. Phys. Lett. 340 232
[5] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[6] Bao Z, Dodabalapur A and Lovinger A L 1996 Appl. Phys. Lett. 69 4108
[7] Salaneck W R, Inganas O, Themans B, Nilsson J O, Sjogren B, Osterholm J E, Breďas J L and Svensson S 1988 J. Chem. Phys. 89 4613
[8] Padinger F, Rittber R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[9] Penmans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
[10] Mühlbacher D, Scharber M, Morana M, Zhu Z G, Waller D, Gaudiana R and Brabec C 2006 Adv. Mater. 18 2884
[11] Blouin N, Michaud A and Leclerc M 2007 Adv. Mater. 19 2295
[12] Kuwabara T, Kawahara Y, Yamaguchi T and Takahashi K 2009 ACS Appl. Mater. Inter. 10 2107
[13] Zhang C F, Tong S W, Jiang C Y, Kang E T, Chan D S H and Zhu C X 2008 Appl. Phys. Lett. 93 043307
[14] Chan M Y, Lai S L, Fung M K, Lee C S and Lee S T 2007 Appl. Phys. Lett. 90 023504
[15] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[16] Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nat. Mater. 6 497
[17] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
[18] Moon J S, Takacs C J, Cho S, Coffin R C, Kim H, Bazan G C and Heeger A J 2010 Nano Lett. 10 4005
[19] Zhou H Q, Zhang Y, Seifter J, Collins S D, Luo C, Bazan G C, Nguyen T Q and Heeger A J 2013 Adv. Mater. 25 1646
[20] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi W J, Yu Z S, Zhang Y H, Brian B and Ma Q Z 2013 Chin. Phys. B 22 018801
[21] He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J and Cao Y 2011 Adv. Mater. 23 4636
[22] Yang Q Q, Zhao S L, Xu Z, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F and Xu X R 2012 Chin. Phys. B 21 128402
[23] Benor A, Takizawa S Y, Perez-Bolivar C and Anzenbacher P 2010 Org. Electron. 11 938
[24] Zhang F J, Xu X W, Tang W H, Zhang J, Zhuo Z L, Wang J, Wang J, Xu Z and Wang Y S 2011 Sol. Energy Mater. Sol. Cells 95 1785
[25] Zhang F J, Sun F Y, Shi Y Z, Zhuo Z L, Lu L F, Zhao D W, Xu Z and Wang Y S 2010 Energy Fuels 24 3739
[26] Long Y B 2010 Sol. Energy Mater. Sol. Cells 94 744
[27] Shrotriya V, Li G, Yao Y, Chu C W and Yang Y 2006 Appl. Phys. Lett. 88 073508
[28] Li Y, Zhang D Q, Duan L, Zhang R, Wang L D and Qiu Y 2007 Appl. Phys. Lett. 90 012119
[29] Tachibana Y, Akiyama H Y and Kuwabata S 2007 Sol. Energy Mater. Sol. Cells 91 201
[30] Penzkofer A 2013 Chem. Phys. 415 173
[31] Brittain H G, Richardson F S and Martin R B 1976 J. Am. Chem. Soc. 98 8255
[32] Makoui A and Killinger D K 2009 J. Opt. Soc. Am. B 26 691
[33] Zhuo Z L, Zhang F J, Lv Y G, Xu Z, Lu L F, Li J M and Wang Y S 2010 Phys. Scripta 82 055703
[34] Fu Y, Zhang J, Lv Y and Cao W 2008 Spectro. Chim. Acta A 70 646
[35] Klonkowski A M, Lis S, Pietraszkiewicz M, Hnatejko Z, Czarnobaj K and Elbanowski M 2003 Chem. Mater. 15 656
[36] Velasco D S, de Moura A P, Medina A N, Baesso M L, Rubira A F and Cremona M 2010 J. Phys. Chem. B 114 5657
[37] Zhao D X, Hong Z R, Liang C J, Zhao D, Liu X Y, Li W L, Lee C S and Lee S T 2000 Thin Solid Films 363 208
[38] Moulton P F and Weber M J 1998 CRC Handbook of Laser Science and Technology, Lasers and Masers (Boca Raton: CRC Press) Vol. I p. 19
[39] Zhuo Z L, Zhang F J, Xu X W, Wang J, Lu L F and Xu Z 2011 Acta Phys. Chim. Sin. 27 875
[40] Baek W H, Yoon T S, Lee H H and Kim Y S 2010 Org. Electron. 11 933
[41] Kim H, So W W and Moon S J 2007 Sol. Energy Mater. Sol. Cells 91 581
[42] He Y J, Shao M, Xiao K, Smith S C and Hong K L 2013 Sol. Energy Mater. Sol. Cells 118 171
[43] Zhang F J, Zhuo Z L, Zhang J, Wang X, Xu X W, Wang Z X, Xin Y S, Wang J, Wang J, Tang W H, Z Xu and Y S Wang 2012 Sol. Energy Mater. Sol. Cells 97 71
[44] Park Y, Suh D W, Choi K S, Yoo J S, Hamb J, Lee J L and Kim S Y 2013 Org. Electron. 14 1021
[1] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[2] Fullerene solar cells with cholesteric liquid crystal doping
Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒). Chin. Phys. B, 2016, 25(9): 098401.
[3] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[4] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[5] Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods
Mehdi Ahmadi, Sajjad Rashidi Dafeh. Chin. Phys. B, 2015, 24(11): 117203.
[6] F4-TCNQ concentration dependence of the current–voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode
E. Yağlıoğlu, Ö. Tüzün Özmen. Chin. Phys. B, 2014, 23(11): 117306.
[7] Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction
Liu Yu-Xuan (刘宇譞), Lü Long-Feng (吕龙峰), Ning Yu (宁宇), Lu Yun-Zhang (陆运章), Lu Qi-Peng (鲁启鹏), Zhang Chun-Mei (张春梅), Fang Yi (方一), Tang Ai-Wei (唐爱伟), Hu Yu-Feng (胡煜峰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Hou Yan-Bing (侯延冰). Chin. Phys. B, 2014, 23(11): 118802.
[8] Effects of annealing rate and morphology of sol–gel derived ZnO on the performance of inverted polymer solar cells
Yu Xuan (余璇), Hu Zi-Yang (胡子阳), Huang Zhen-Hua (黄振华), Yu Xiao-Ming (于晓明), Zhang Jian-Jun (张建军), Zhao Geng-Shen (赵庚申), Zhao Ying (赵颖). Chin. Phys. B, 2013, 22(11): 118801.
[9] Enhanced performance in organic photovoltaic devices with KMnO4 solution treated indium tin oxide anode modification
Yang Qian-Qian (杨倩倩), Zhao Su-Ling (赵谡玲), Zhang Fu-Jun (张福俊), Yan Guang (闫光), Kong Chao (孔超), Fan Xing (樊星), Zhang Yan-Fei (张妍斐), Xu Xu-Rong (徐叙瑢). Chin. Phys. B, 2012, 21(12): 128402.
[10] Performance improvement of MEH-PPV:PCBM solar cells using bathocuproine and bathophenanthroline as the buffer layers
Liu Xiao-Dong(刘晓东), Zhao Su-Ling (赵谡玲), Xu Zheng(徐征), Zhang Fu-Jun(张福俊), Zhang Tian-Hui(张天慧), Gong Wei(龚伟), Yan Guang(闫光), Kong Chao(孔超), Wang Yong-Sheng(王永生), and Xu Xu-Rong(徐叙瑢). Chin. Phys. B, 2011, 20(6): 068801.
[11] Influence of small-molecule material on performance of polymer solar cells based on MEH-PPV:PCBM blend
Liu Xiao-Dong(刘晓东), Xu Zheng(徐征), Zhang Fu-Jun(张福俊), Zhao Su-Ling(赵谡玲), Zhang Tian-Hui(张天慧), Gong Wei(龚伟), Song Jing-Lu (宋晶路), Kong Chao(孔超), Yan Guang(闫光), and Xu Xu-Rong(徐叙瑢). Chin. Phys. B, 2010, 19(11): 118601.
No Suggested Reading articles found!