Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098901    DOI: 10.1088/1674-1056/23/9/098901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity

Wang Liang-Shun (王良顺)a, Wu Zhi-Hai (吴治海)b
a Key Laboratory of Image Processing and Intelligent Control of the Ministry of Education, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
b Key Laboratory for Advanced Process Control of Light Industry of the Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Abstract  Inspired by the fact that in most existing swarm models of multi-agent systems the velocity of an agent can be infinite, which is not in accordance with the real applications, we propose a novel swarm model of multi-agent systems where the velocity of an agent is finite. The Lyapunov function method and LaSalle's invariance principle are employed to show that by using the proposed model all of the agents eventually enter into a bounded region around the swarm center and finally tend to a stationary state. Numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
Keywords:  multi-agent systems      swarm      finite velocity      attraction and repulsion  
Received:  03 April 2014      Revised:  20 May 2014      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  05.65.+b (Self-organized systems)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147 and 61034006).
Corresponding Authors:  Wang Liang-Shun     E-mail:  wangliangshun340@163.com

Cite this article: 

Wang Liang-Shun (王良顺), Wu Zhi-Hai (吴治海) A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity 2014 Chin. Phys. B 23 098901

[1] Sun Y Z and Ruan J 2008 Chin. Phys. Lett. 25 3493
[2] Hu J P and Yuan H W 2009 Chin. Phys. B 18 3777
[3] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 018901
[4] Yan J, Guan X P and Luo X Y 2011 Chin. Phys. B 20 048901
[5] Park M J, Lee S M, Son J W and Cha E J 2012 Chin. Phys. B 21 110508
[6] Song H Y, Yu L, Hu H X and Zhang W A 2012 Chin. Phys. B 21 028901
[7] Wu Z H, Peng L, Xie L B and Wen J W 2012 Chin. Phys. B 21 128902
[8] Park M J, Lee S M, Son J W and Cha E J 2013 Chin. Phys. B 22 070506
[9] Sun Y Z, Li W and Ruan J 2013 Chin. Phys. B 22 030510
[10] Wu Z H, Peng L, Xie L B and Wen J W 2013 Chin. Phys. B 22 128901
[11] Li W and Wang X F 2007 Phys. Rev. E 75 021917
[12] Forgoston E and Schwartz I B 2008 Phys. Rev. E 77 035203
[13] Huepe C and Aldana M 2008 Physica A 387 2809
[14] Li W, Zhang H T, Chen M Z Q and Zhou T 2008 Phys. Rev. E 77 021920
[15] Iwasa M, Iida K and Tanaka D 2010 Phys. Rev. E 81 046220
[16] Touma J R, Shreim A and Klushin L I 2010 Phys. Rev. E 81 066106
[17] Wu Y, Yang J J and Wang L 2011 Acta Phys. Sin. 60 108902 (in Chinese)
[18] Biggs J D, Bennet D J and Dadzie S K 2012 Phys. Rev. E 85 016105
[19] Chen Z F, Liao H M and Chu T G 2012 Physica A 391 3988
[20] George M and Ghose D 2012 Physica A 391 4121
[21] Derr K and Manic M 2013 IEEE Trans. Ind. Inform. 9 1900
[22] Yu W W, Chen G R, Cao M, Lu J H and Zhang H T 2013 Chaos 23 043118
[23] Zhang G X, Fricke G K and Garg D P 2013 IEEE ASME Trans. Mechatron. 18 121
[24] Cai N, Cao J W, Ma H Y and Wang C X 2014 Arab. J. Sci. Eng. 39 2427
[25] Das S, Goswami D, Chatterjee S and Mukherjee S 2014 Eng. Appl. Artif. Intell. 30 189
[26] Vicsek T, Czirok A, Jacob E B, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[27] Gaze V and Passino K M 2003 IEEE Trans. Autom. Control 48 692
[28] Gaze V and Passino K M 2004 IEEE Trans. Syst., Man, Cybern. B, Cybern. 34 539
[29] Liu B, Chu T G, Wang L and Wang Z F 2005 Chin. Phys. Lett. 22 254
[30] Liu B, Chu T G, Wang L and Wang Z F 2008 Chaos Soliton. Fract. 38 277
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[5] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[6] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[7] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[8] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[9] Particle swarm optimization and its application to the design of a compact tunable guided-mode resonant filter
Dan-Yan Wang(王丹燕), Qing-Kang Wang(王庆康). Chin. Phys. B, 2018, 27(3): 037801.
[10] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[11] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[12] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[13] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[14] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[15] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
No Suggested Reading articles found!