Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096204    DOI: 10.1088/1674-1056/23/9/096204
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects

Ma Xiao-Juan (马小娟), Hao Bin-Bin (郝斌斌), Ma Hai-Xia (马海霞), Liu Fu-Sheng (刘福生)
Institute of High Temperature and High Pressure Physics, Key Laboratory of Advanced Technologies of Materials of the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
Abstract  The strength always exists before the material melts. In this paper, the viscoelastic-plastic model is applied to improve the finite difference method, and the numerical solutions for the disturbance amplitude damping behavior of the sinusoidal shock front in a flyer-impact experiment are obtained. When the aluminum is shocked to 101 GPa, the effect of elastoplasticity on the zero-amplitude point of the oscillatory damping curve is the same as that of viscosity when η=700 Pa·s, and the real shear viscosity coefficient of the shocked aluminum is determined to be about 2800±100 Pa·s. Comparing the experiment data with the numerical results of the viscoelastic-plastic model, we find that the aluminum is close to melting at 101 GPa.
Keywords:  shock      shear viscosity      elastoplasticity  
Received:  12 December 2013      Revised:  13 March 2014      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  62.10.+s (Mechanical properties of liquids)  
  62.20.D- (Elasticity)  
  62.20.fq (Plasticity and superplasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11002120) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014ZT31).
Corresponding Authors:  Ma Xiao-Juan     E-mail:  jxmzjm@126.com

Cite this article: 

Ma Xiao-Juan (马小娟), Hao Bin-Bin (郝斌斌), Ma Hai-Xia (马海霞), Liu Fu-Sheng (刘福生) Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects 2014 Chin. Phys. B 23 096204

[1] Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919
[2] Buffett B A 1997 Nature 388 571
[3] Secco R A 1995 Viscosity of the Outer Core (New York: American Geophysical Union) p. 159
[4] Mineev V N and Funtikov A I 2004 Phys. Usp. 47 671
[5] Xi F and Cai L C 2009 Chin. Phys. B 18 2898
[6] Huston A L, Justus B L and Campillo A J 1985 Chem. Phys. Lett. 122 617
[7] Hamann S and Linton M 1969 J. Appl. Phys. 40 913
[8] Al'tshuler L, Doronin V and Kim G K 1986 J. Appl. Mech. Tech. Phys. USSR 27 887
[9] Sakharov A D, Zaidel R M, Mineev V N and Oleinik A G 1965 Sov. Phys. Doklady 9 1091
[10] Ma X J, Liu F S, Li Y L, Zhang M J, Li Y H, Sun Y Y, Peng X J and Jing F Q 2010 Acta Phys. Sin. 59 4761 (in Chinese)
[11] Liu F S, Yang M X, Li Q W, Chen J X and Jing F Q 2005 Chin. Phys. Lett. 22 747
[12] Li Y L, Liu F S, Ma X J, Li Y L, Yu M, Zhang J C and Jing F Q 2009 Rev. Sci. Instrum. 80 139
[13] Li Y L, Liu F S, Zhang M J, Ma X J, Li Y L and Zhang J C 2009 Chin. Phys. Lett. 26 038301
[14] Ma X J, Liu F S, Zhang M J and Sun Y Y 2011 Chin. Phys. B 20 068301
[15] Ma X J, Liu F S, Sun Y Y, Zhang M J, Peng X J and Li Y H 2011 Chin. Phys. Lett. 28 044704
[16] Ma X J, Liu F S and Jing F Q 2010 Sci. China Ser. G 53 802
[17] Chua J O and Ruoff A L 1975 J. Appl. Phys. 46 4659
[18] Holian B L and Lomdahl P S 1998 Science 280 2085
[19] Mader C L 1998 Explosives and Propellants (2nd edn.) (Florida: CRC Press) p. 327
[20] Steinberg D J, Cochran S G and Guinan M W 1980 J. Appl. Phys. 51 1498
[1] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[2] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[3] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[4] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[5] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[6] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[7] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[8] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[9] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[10] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[11] Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110]
Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋). Chin. Phys. B, 2019, 28(12): 126201.
[12] Shock oscillation in highly underexpanded jets
Xiao-Peng Li(李晓鹏), Rui Zhou(周蕊), Xiao-Ping Chen(陈小平), Xue-Jun Fan(范学军), Guo-Shan Xie(谢国山). Chin. Phys. B, 2018, 27(9): 094705.
[13] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[14] Ejecta from periodic grooved Sn surface under unsupported shocks
Wen-Bin Liu(刘文斌), Dong-Jun Ma(马东军), An-Min He(何安民), Pei Wang(王裴). Chin. Phys. B, 2018, 27(1): 016202.
[15] Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle
Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
No Suggested Reading articles found!