Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 088902    DOI: 10.1088/1674-1056/23/8/088902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An effective method to improve the robustness of small-world networks under attack

Zhang Zheng-Zhen (张争珍)a, Xu Wen-Jun (许文俊)a, Zeng Shang-You (曾上游)b, Lin Jia-Ru (林家儒)a
a School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario.
Keywords:  small-world networks      robustness      network efficiency  
Received:  21 September 2013      Revised:  24 April 2014      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101117 and 61171100), the National Key Scientific and Technological Project of China (Grant Nos. 2012ZX03004005002 and 2013ZX03003012), the National High Technology Research and Development Program of China (863 Program, Grant No. 2014AA01A701), the Special Youth Science Foundation of Jiangxi Province of China (Grant No. 20133ACB21007), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20132BAB201018 and 20132BAB201018), and the Fundamental Research Funds for the Central Universities, China (Grant No. BUPT2012RC0112).
Corresponding Authors:  Lin Jia-Ru     E-mail:  jrlin@bupt.edu.cn

Cite this article: 

Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒) An effective method to improve the robustness of small-world networks under attack 2014 Chin. Phys. B 23 088902

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
[4] Latora V and Marchiori M 2003 Eur. Phys. J. B 32 249
[5] Latora V and Marchiori M 2002 Physica A 314 109
[6] Lago-Fernández L F, Huerta R, Corbacho F and Sigüenza J A 2000 Phys. Rev. Lett. 84 2758
[7] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[8] Liang X et al. 2012 PLoS One 7 e32766
[9] Bullmore Ed and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[10] Tian L, Wang J, Yan C and He Y 2011 NeuroImage 54 191
[11] Wagner A and Fell D A 2001 Proc. R. Soc. Lond. B 268 1803
[12] Li S B, Wu J J, Gao Z Y, Lin Y and Fu B B 2011 Acta Phys. Sin. 60 050701 (in Chinese)
[13] Sun K, Mao X M and Ouyang Q 2002 Chin. Phys. 11 1280
[14] Onnela J P, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J and Barabási A L 2007 Proc. Natl. Acad. Sci. 104 7332
[15] Schintler L A, Gorman S P, Reggiani A, Patuelli R, Gillespie A, Nijkamp P and Rutherford J 2005 Networks and Spatial Economics 5 351
[16] Guidoni D L, Mini R A F and Loureiro A A F 2010 Computer Networks 54 1266
[17] Sen P, Dasgupta S, Chatterjee A, Sreeram P A, Mukherjee G and Manna S S 2003 Phys. Rev. E 67 036106
[18] Rubinov M and Sporns O 2010 NeuroImage 52 1059
[19] Stam C J, Jones B F, Nolte G, Breakspear M and Scheltens Ph 2007 Cerebral Cortex 17 92
[20] LiuY, Liang M, Zhou Y, He Y, Hao Y H, Song M, Yu C S, Liu H H, Liu Z N and Jiang T Z 2008 Brain 131 945
[21] Wang L, Zhu C Z, He Y, Zang Y F, Cao Q J, Zhang H, Zhong Q H and Wang Y F 2009 Hum. Brain Mapp. 30 638
[22] Zhuo Z, Cai S M, Fu Z Q and Zhang J 2011 Phys. Rev. E 84 031923
[23] Brust M R, Ribeiro C H C, Turgut D and Rothkugel S 2010 35th Annual IEEE Conference on Local Computer Networks 144
[24] Hai Z and Sun X 2008 IEEE Trans. Knowl. Data Eng. 20 1712
[25] Li M, Lee W, Sivasubramaniam A and Zhao J 2008 IEEE Trans. Paral. Distrib. Sys. 19 735
[26] Zhu H, Luo H, Peng H, Li L and Luo Q 2009 Chaos, Solitons and Fractals 41 1828
[27] Kulkarni R V, Förster A and Kumar G 2011 IEEE Commun. Surv. Tut. 13 68
[28] Zhuo Z, Cai S M, Fu Z Q and Wang W X 2011 New J. Phys. 13 053030
[29] Tsonis A A and Roebber P J 2004 Physica A 333 497
[30] Bialonski S, Horstmann M T and Lehnertz K 2010 Chaos 20 013134
[31] Gonges J F, Zou Y and Marwan N 2009 The European Physical Journal Special Topics 174 157
[32] Steinhaeuser K, Ganguly A R and Chawla N V 2012 Climate Dynamics 39 889
[33] Wang X J, Zhi R, He W P and Gong Z Q 2012 Chin. Phys. B 21 029201
[34] Gong Z Q, Wang X J, Zhi R and Feng A X 2011 Chin. Phys. B 20 079201
[35] Wang G L and Anastasios A T 2009 Chin. Phys. B 18 5091
[36] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109
[37] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[38] Helmy A 2003 IEEE Commun. Lett. 7 10
[39] Guidoni D L, Mini R A F and Loureiro A A F 2010 Comput. Networks 54 1266
[40] Iturria-Medina Y, Sotero R C, Canales-Rodríguez E J, Alemán-Gómez Y and Melie-García L 2008 NeuroImage 40 1064
[41] Albert R, Jeong H and Barabási A L 2000 Nature 406 387
[42] Verma C K, Tamma B R, Manoj B S and Rao R 2011 IEEE Commun Lett. 15 455
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[4] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[5] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[6] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[7] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[8] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[9] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[10] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[11] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[12] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[13] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[14] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[15] An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance
Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚). Chin. Phys. B, 2014, 23(6): 064201.
No Suggested Reading articles found!