Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 074401    DOI: 10.1088/1674-1056/23/7/074401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet

A. Ahmada, S. Asghara b, A. Alsaedib
a COMSATS Institute of Information Technology, Islamabad, Pakistan;
b Distinguished Adjunct Professor, Department of Mathematics, King Abdul Aziz University, Jeddah, Saudi Arabia
Abstract  This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number.
Keywords:  hyperbolically stretching sheet      nanofluid      boundary layer flow heat transfer  
Received:  13 September 2013      Revised:  01 January 2014      Accepted manuscript online: 
PACS:  44.20.+b (Boundary layer heat flow)  
  44.05.+e (Analytical and numerical techniques)  
  47.15.-x (Laminar flows)  
Fund: Project supported by the CⅡ T Research Grant Program (CRGP) of COMSATS Institute of Information Technology, Islamabad, Pakistan (Grant No. 16-69/CRGP/CⅡ T/IBD/10/711).
Corresponding Authors:  A. Ahmad     E-mail:  adeelahmed@comsats.edu.pk
About author:  44.20.+b; 44.05.+e; 47.15.-x

Cite this article: 

A. Ahmad, S. Asghar, A. Alsaedi Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet 2014 Chin. Phys. B 23 074401

[1] Masuda H, Ebata A, Teramae K and Hishinuma N 1993 Netsu Bussei 7 227
[2] Choi S U S 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, p. 99
[3] Buongiorno J 2006 ASME J. Heat Tran. 128 240
[4] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta. Phys. Sin. 61 154401 (in Chinese)
[5] Xie H Q and Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese)
[6] Xiao B Q 2013 Chin. Phys. B 22 14402
[7] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[8] Kumaran V and Ramanaiah G 1996 Acta Mech. 116 229
[9] Patrick D W and Magyari E 2010 Acta Mech. 209 353
[10] Eerdunbuhe and Temuerchaolu 2012 Chin. Phys. B 21 035201
[11] Magyari E and Keller B 1999 J. Phys. D: Appl. Phys. 32 577
[12] Ahmad A and Asghar S 2012 Appl. Math. Mech. 33 445
[13] Bachok N, Ishak A and Pop I 2010 Int. J. Therm Sci. 491663
[14] Khan W A and Pop I 2010 Int. J. Heat Mass Tran. 53 2477
[15] Rana P and Bhargava R 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 212
[16] Nadeem S and Lee C 2012 Nanoscale Res. Lett. 7 94
[1] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[2] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[3] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[4] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[5] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[6] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[7] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[8] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.
[9] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波). Chin. Phys. B, 2015, 24(8): 084401.
[10] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[11] Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface
S. Nadeem, Rashid Mehmood, Noreen Sher Akbar. Chin. Phys. B, 2015, 24(1): 014702.
[12] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[13] Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation
A. M. Salem, Galal Ismail, Rania Fathy. Chin. Phys. B, 2014, 23(4): 044402.
[14] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[15] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
No Suggested Reading articles found!