Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067701    DOI: 10.1088/1674-1056/23/6/067701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabricating GeO2 passivation layer by N2O plasma oxidation for Ge NMOSFETs application

Lin Meng (林猛), An Xia (安霞), Li Ming (黎明), Yun Quan-Xin (云全新), Li Min (李敏), Li Zhi-Qiang (李志强), Liu Peng-Qiang (刘朋强), Zhang Xing (张兴), Huang Ru (黄如)
Key Laboratory of Microelectronic Devices and Circuits, Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract  In this paper, oxidation of Ge surface by N2O plasma is presented and experimentally demonstrated. Results show that 1.0-nm GeO2 is achieved after 120-s N2O plasma oxidation at 300 ℃. The GeO2/Ge interface is atomically smooth. The interface state density of Ge surface after N2O plasma passivation is about ~ 3×1011 cm-2·eV-1. With GeO2 passivation, the hysteresis of metal-oxide-semiconductor (MOS) capacitor with Al2O3 serving as gate dielectric is reduced to ~ 50 mV, compared with ~ 130 mV of the untreated one. The Fermi-level at GeO2/Ge interface is unpinned, and the surface potential is effectively modulated by the gate voltage.
Keywords:  Ge      GeO2 passivation      N2O plasma oxidation      Ge NMOSFETs  
Received:  06 October 2013      Revised:  16 December 2013      Accepted manuscript online: 
PACS:  77.55.D-  
  77.55.df (For silicon electronics)  
  77.55.E-  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00601) and the National Natural Science Foundation of China (Grant Nos. 60625403, 60806033, and 60925015).
Corresponding Authors:  An Xia, Yun Quan-Xin, Huang Ru     E-mail:  anxia@ime.pku.edu.cn;liming.ime@pku.edu.cn;ruhuang@pku.edu.cn

Cite this article: 

Lin Meng (林猛), An Xia (安霞), Li Ming (黎明), Yun Quan-Xin (云全新), Li Min (李敏), Li Zhi-Qiang (李志强), Liu Peng-Qiang (刘朋强), Zhang Xing (张兴), Huang Ru (黄如) Fabricating GeO2 passivation layer by N2O plasma oxidation for Ge NMOSFETs application 2014 Chin. Phys. B 23 067701

[1] Sun J B and Yang Z W 2013 Chin. Phys. B 22 067701
[2] Fan J B and Liu H X 2013 Chin. Phys. B 22 037702
[3] Bethge O and Abermann S 2010 Appl. Phys. Lett. 96 052802
[4] Dimoulas A and Tsipas P 2006 Appl. Phys. Lett. 89 252110
[5] Kuzum D and Park J H 2011 IEEE Trans. Electron Dev. 58 1015
[6] Xie Q and Deng S 2011 IEEE Electron Dev. Lett. 32 1656
[7] Matsubara H and Sasada T 2008 Appl. Phys. Lett. 93 032104
[8] Lee C H and Nishimura T 2010 International Electron Device Meeting, December 6-8, 2010, San Francisco, USA, p. 416
[9] Nishimura T and Kita K 2008 Appl. Phys. Express 1 051406
[10] Liu G Z and Li C 2012 Chin. Phys. B 21 117701
[11] Li X F and Liu X J 2011 Appl. Phys. Lett. 98 162903
[12] Delabie A and Bellenger F 2007 Appl. Phys. Lett. 91 082904
[13] Xie R and He W 2008 Appl. Phys. Lett. 93 073504
[14] Lee C H and Nishimura T 2009 International Electron Device Meeting, December 7-9, 2009, Baltimore, USA, p. 457
[15] Kuzum D and Krishnamohan T 2008 IEEE Electron Dev. Lett. 29 328
[16] Deng S and Xie Q 2011 Appl. Phys. Lett. 99 052906
[17] Fukuda Y and Yazaki Y 2010 IEEE Trans. Electron Dev. 57 282
[18] Lau W S and Qian P W 1997 Jpn. J. Appl. Phys. 36 661
[19] Shin H C and Hu C M 1996 Semicond. Sci. Technol. 11 463
[20] Oshima Y and Sun Y 2008 J. Electrochem. Soc. 155 G304
[21] Matsubara H and Takenaka M 2008 International Electron Device Meeting, December 15-17, 2008, San Francisco, USA, p. 1
[22] Batude P and Garros X 2007 J. Appl. Phys. 102 0345014
[23] Schroder D K 2006 Semiconductor Material and Device Characterization (New York: John Wiley & Sons) pp. 342-347
[24] Berglund C N 1966 IEEE Trans. Electron Dev. 13 701
[25] Fukuda Y and Okamoto H 2011 Appl. Phys. Lett. 99 132907
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[6] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[7] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[8] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[9] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[10] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[11] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[12] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[13] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[14] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[15] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
No Suggested Reading articles found!