Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063103    DOI: 10.1088/1674-1056/23/6/063103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical studies on a series of nitroaliphatic energetic compounds

Zeng Hui (曾晖), Zhao Jun (赵俊)
School of Physical Science and Technology, Yangtze University, Jingzhou 434023, China
Abstract  Density functional theory calculations at the B3LYP/6-311G** level are performed to study the geometric and electronic structures of a series of nitroaliphatic compounds. The heats of formation (HOF) are predicted through the designed isodesmic reactions. Thermal stabilities are evaluated via the homolytic bond dissociation energies (BDEs). Further, the correlation is developed between impact sensitivity h50% and the ratio (BDE/E) of the weakest BDE to the total energy E containing zero point energy correction. In addition, the relative stability of the title compounds is evaluated based on the analysis of calculated Mulliken population and the energy gaps between the frontier orbitals. The calculated BDEs, HOFs, and energy gaps consistently indicate that compound 1,1,1,6,6,6-hexanitro-3-hexyne is the most unstable and the compound 3,3,4,4,-tetranitro-hexane is the most stable. These results provide basic information for the molecular design of novel high energetic density materials.
Keywords:  density functional theory      heats of formation      bond dissociation energy      isodesmic reaction  
Received:  11 September 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  31.15.E-  
  82.60.Cx (Enthalpies of combustion, reaction, and formation)  
  33.15.Fm (Bond strengths, dissociation energies)  
  82.20.-w (Chemical kinetics and dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304022 and11347010), the Research Foundation of Education Bureau of Hubei Province, China (Grant Nos. Q20131208, T201204, and XD2014069), the Foundation of Yangtze University for Outstanding Young Teachers, China (Grant Nos. cyq201321 and cyq201322), and the Project for Basic Subjects (Grant No. 2013cjp10).
Corresponding Authors:  Zhao Jun     E-mail:  zhaojun@yangtzeu.edu.cn

Cite this article: 

Zeng Hui (曾晖), Zhao Jun (赵俊) Theoretical studies on a series of nitroaliphatic energetic compounds 2014 Chin. Phys. B 23 063103

[1] Sikder A K and Sikder N 2004 J. Hazard. Mater. 112 1
[2] Sikder A K, Maddalla G, Agraval J P and Singh H 2001 J. Hazard. Mater. A 84 1
[3] Li Y F, Fan X W, Wang Z Y and Ju X H 2009 J. Mol. Struct. (Theochem) 896 96
[4] Pople J A, Luke B T, Frisch M J and Binkley J S 1985 J. Phys. Chem. 89 2198
[5] Fan X W and Ju X H 2008 J. Comput. Chem. 29 505
[6] Ju X H, Wang X and Bei F L 2005 J. Comput. Chem. 26 1263
[7] Chen Z X, Xiao J M, Xiao H M and Chiu Y N 1999 J. Phys. Chem. A 103 8062
[8] Xiao H M and Chen Z X 2000 The Modern Theory for Tetrazole Chemistry (Beijing: Science Press)
[9] Xiang H E and Wang F 2006 Chin. Phys. Lett. 23 1738
[10] Luo Y H, Ge G X and Jing Q URL:http://wulixb.iphy.ac.cn/CN/Y2009/V58/I12/82362009 Acta Phys. Sin. 58 8236 (in Chinese)
[11] He B, Shao J X and Cheng X L 2006 Chin. Phys. 15 329
[12] Ge G X, Yang Z Q and Cao H B 2009 Acta Phys. Sin. 58 6128 (in Chinese)
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Zhao J, Xu D H and Cheng X L 2010 Struct. Chem. 21 1235
[15] Coburn M D 1977 "Ammonium 2,4,5-trinitroimidazole", Los Alamos, New Mexico, USA, U.S. Patent 4028154
[16] Cho S G, Park B S and Cho J R 1999 Propel. Explos. Pyrotech. 24 343
[17] Politzer P, Laurence P R, Abrahmsen L, Zilles B A and Sjoberg P 1984 Chem. Phys. Lett. 111 75
[18] Murray J S and Politzer P 1990 J. Mol. Struct. (Theochem) 209 163
[19] Zhang S W and Truong T N 2000 J. Phys. Chem. A 104 7304
[20] Owens F J 1996 J. Mol. Struct. (Theochem) 370 11
[21] Rice B M, Sahu S and Owens F J 2002 J. Mol. Struct. (Theochem) 583 69
[22] Zhao Q, Zhan S and Li Q S 2005 Chem. Phys. Lett. 407 105
[23] Johnson M A and Truong T N 1999 J. Phys. Chem. A 103 8840
[24] Mohammad H K, Bahman E S and Ali H 2011 J. Hazard. Mater. 185 1086
[25] Mohammad H K and Hamid R P 2009 J. Hazard. Mater. 169 158
[26] Mohammad H K 2007 J. Hazard. Mater. 143 437
[27] Mohammad H K 2007 J. Hazard. Mater. 148 648
[28] Mohammad H K 2011 J. Hazard. Mater. 190 330
[29] Frisch M J, Trucks G W, Schlegel H B, et al., GAUSSIAN 03, Revision B.02, Gaussian, Inc., Pittsburgh, PA
[30] Lee K Y, Storm C B, Hiskey M A and Coburn M D 1991 J. Energ. Mater. 9 415
[31] Galvez-Ruiz J C, Holl G, Karaghiosoff K, Klapotke T M, Lohnwitz K, Mayer P, Noth H, Polborn K, Christoph J R, Suter M and Jan J W 2005 Inorg. Chem. 44 4238
[32] Perdew J P 1997 Phys. Rev. Lett. 78 1396
[33] Hahre W J, Radom L and Schleyer P V R 1986 Ab Initio Molecular Orbital Theory (New York: Wiley)
[34] Chen P C, Chieh Y C and Tzeng S C 2003 J. Mol. Struct. (Theochem) 634 215
[35] Linstrom P J and Mallard W G (eds.) 2005 NIST Chemistry WebBook, NIST Standard Reference Database, Number 69, National Institute Standards and Technology, Gaithersburg, MD, http://webbook.nist.gov/chemistry/
[36] Cobos C J 2005 J. Mol. Struct. (Theochem) 714 147
[37] Bozzelli J W, Rajasekaran I and Hur J 2005 J. Phys. Org. Chem. 192 93
[38] Ju X H, Li Y M and Xiao H M 2005 J. Phys. Chem. A 109 934
[39] Bozzelli J W and Rajasekaran I 2007 J. Phys. Chem. Ref. Data 36 663
[40] Abou-Rachid H, Song Y, Hu A, Dudiy S, Zybin S V and Goddard III W A 2008 J. Phys. Chem. A 112 11914
[41] Benson S W 1976 Thermochemical Kinetics, 2nd edn. (New York: Wiley-Interscience)
[42] Chung G S, Schimidt M W and Gordon M S 2000 J. Phys. Chem. A 104 5647
[43] Storm G B, Stine J R and Kramer J F 1990 "Sensitivity Relationships in Energetic Materials", in: Bulusu S N ed. Chemistry and Physics of Energetic Materials (Netherlands: Kluwer Academic Publishers) p. 605
[44] Song X S, Cheng X L, Yang X D and He B 2006 Propellants. Explos. Pyrotech. 31 306
[45] Song X S, Cheng X L, Yang X D, Li D H and Linhu R F 2008 J. Hazard. Mater. 150 317
[46] Li X H, Zhang R Z and Zhang X Z. 2010 J. Hazard. Mater. 183 622
[47] Su X F, Cheng X L, Meng C M and Yuan X L 2009 J. Hazard. Mater. 161 551
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!