Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020307    DOI: 10.1088/1674-1056/23/2/020307
GENERAL Prev   Next  

Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction

Yang Yang (杨阳), Wang An-Min (王安民)
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We study the dynamics of correlations for a hybrid qubit–qutrit system in an XY spin-chain environment with Dzyaloshinsky–Moriya interaction. Our discussion involves a comparative analysis of negativity, quantum discord, and measurement-induced disturbance. It is found that the quantum discord is optimal of the three quantum correlations to detect the critical point of quantum phase transition. Only when the qubit interacts with the environment, is the phenomenon of sudden transition between the classical correlation and the quantum discord observed. Moreover, the Dzyaloshinsky–Moriya interaction enhances the decay of quantum correlations.
Keywords:  quantum correlation      quantum discord      measurement-induced disturbance      Dzyaloshinsky–      Moriya interaction  
Received:  26 April 2013      Revised:  11 July 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975125).
Corresponding Authors:  Yang Yang     E-mail:  yangyang@mail.ustc.edu.cn
About author:  03.67.Mn; 03.65.Ud; 03.65.Yz

Cite this article: 

Yang Yang (杨阳), Wang An-Min (王安民) Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction 2014 Chin. Phys. B 23 020307

[1] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[2] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[3] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[4] Dillenschneider R 2008 Phys. Rev. B 78 224413
[5] Sarandy M S 2009 Phys. Rev. B 80 022108
[6] Dakić B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666
[7] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[8] Luo S 2010 Phys. Rev. Lett. 80 030501
[9] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[10] Ali M 2010 J. Phys. A: Math. Theor. 43 495303
[11] Luo S 2008 Phys. Rev. A 77 022301
[12] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[13] Werlang T, Souza S, Fanchini F F and Villas B C J 2009 Phys. Rev. A 80 024103
[14] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 1 7
[15] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[16] Qiu L and Wang A M 2011 Phys. Scr. 84 045021
[17] Ye B L, Liu Y M, Liu X S and Zhang Z J 2013 Chin. Phys. Lett. 30 020302
[18] Luo D W, Lin H Q, Xu J B and Yao D X 2011 Phys. Rev. A 84 062112
[19] Li Y C, Lin H Q and Xu J B 2012 Europhys. Lett. 100 20002
[20] Karpat G and Gedik Z 2011 Phys. Lett. A 375 4166
[21] Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
[22] Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
[23] Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
[24] Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501
[25] Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
[26] Liu B Q, Shao B and Zhou J 2010 Phys. Rev. A 82 062119
[27] Yan Y Y, Qin L G and Tian L J 2012 Chin. Phys. B 21 100304
[28] Sachdev S 1999 Quantum Phase Transition (Cambridge: Cambridge University Press)
[29] Li Y C and Li S S 2009 Phys. Rev. A 79 032338
[30] Peres A 1996 Phys. Rev. Lett. 77 1413
[31] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[1] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[2] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[3] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[4] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[5] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[6] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[7] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[10] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[11] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[12] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[13] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[14] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[15] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
No Suggested Reading articles found!