Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024207    DOI: 10.1088/1674-1056/23/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Applications of quantum Fourier transform in photon-added coherent state

Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军)
Department of Physics, Huainan Normal University, Huainan 232001, China
Abstract  Quantum Fourier transform is realized by the Hadamard gate in a quantum computer, which can also be considered as a Hadamard transform. We introduce the Hadamard transformed photon-added coherent state (HTPACS), which is obtained by letting the photon-added coherent state (PACS) across the quantum Hadamard gate, from this result. It is found that the HTPACS can be considered as a coordinate–momentum mutual exchanging followed by a squeezing transform of the PACS. In addition, the non-classical statistical properties of HTPACS, such as squeezing coefficient, Mandel parameter, etc., are also discussed.
Keywords:  quantum Fourier transform      Hadamard gate      non-classical state  
Received:  28 March 2013      Revised:  05 June 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the Natural Science Foundation of the Anhui Provincial Higher Education Institutions of China (Grant Nos. KJ2011Z339 and KJ2011Z359).
Corresponding Authors:  Yu Hai-Jun     E-mail:  renfeiyu@mail.ustc.edu.cn
About author:  42.50.Dv; 03.65.Wj; 03.67.Mn

Cite this article: 

Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军) Applications of quantum Fourier transform in photon-added coherent state 2014 Chin. Phys. B 23 024207

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Benenti G, Casati G and Shepelyansky D L 2001 Eur. Phys. J. D 17 265
[3] Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, ed. Goldwasser S (Los Alamos: IEEE Computer Society) p. 124
[4] Parker S, Bose S and Plenio M B 2000 Phys. Rev. A 61 032305
[5] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag)
[6] Xu X X, Hu L Y and Fan H Y 2010 Opt. Commun. 283 1801
[7] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[8] Glauber R J 1963 Phys. Rev. 130 2529
[9] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[10] Klauder J R 1964 J. Math. Phys. 5 177
[11] Gerry C C 1992 Opt. Commun. 91 247
[12] Blandino R, Ferreyrol F, Barbieri M, Grangier P and Tualle-Brouri R 2012 New J. Phys. 14 013017
[13] Parigi V, Zavatta A, Kim M S and Bellini M 2007 Science 317 1890
[14] Ourjoumtsev A, Dantan A, Tualle-Brouri R and Grangier Ph 2007 Phys. Rev. Lett. 98 030502
[15] Browne D E, Eisert J, Scheel S and Plenio M B 2003 Phys. Rev. A 67 062320
[16] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
[17] Bartlett S D and Sanders B C 2002 Phys. Rev. A 65 042304
[18] Fan H Y and Guo Q 2008 Commun. Theor. Phys. 49 859
[19] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[20] Fan H Y 2006 Ann. Phys. 321 480
[21] Lee J, Kim J and Nha H 2009 J. Opt. Soc. Am. B 26 1363
[22] Mandel L 1979 Opt. Lett. 4 205
[23] Meng X G, Wang J S and Liang B L 2009 Chin. Phys. B 18 2300
[24] Lambropoulos P and Petrosyan D 2007 Fundamentals of Quantum Optics and Quantum Information (Berlin: Springer-Verlag)
[25] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[26] Xu X X, Hu L Y and Fan H Y 2009 Chin. Phys. B 18 5139
[27] Du J M, Ren G and Fan H Y 2011 Chin. Phys. B 20 090302
[1] Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光). Chin. Phys. B, 2019, 28(2): 020302.
[2] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
No Suggested Reading articles found!