CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
A novel method to prepare Au nanocage@SiO2 nanoparticle |
Jiang Tong-Tong (蒋童童), Yin Nai-Qiang (尹乃强), Liu Ling (刘玲), Lei Jie-Mei (雷洁梅), Zhu Li-Xin (朱立新), Xu Xiao-Liang (许小亮) |
Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Gold (Au) nanocage@SiO2 nanoparticles are prepared by a novel approach. The silver (Ag) nanocube@SiO2 structure is synthetized firstly. Next, the method of etching a SiO2 shell by boiling water is adopted to change the penetration rate of AuCl4- through the SiO2 shell. AuCl4- can penetrate through silica shells of different thickness values to react with the Ag nanocube core by changing the incubation time. The surface plasma resonance (SPR) peak of synthetic Au nanocage@SiO2 can be easily tuned into the near-infrared region. Besides, CdTeS quantum dots (QDs) are successfully connected to the surface of Au nanocage@SiO2, which testifies that the incubation process does not change the property of silica.
|
Received: 20 March 2013
Revised: 18 April 2013
Accepted manuscript online:
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272246 and 81172082) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2030000001). |
Corresponding Authors:
Zhu Li-Xin, Xu Xiao-Liang
E-mail: lx-zhu@163.com;xlxu@ustc.edu.cn
|
Cite this article:
Jiang Tong-Tong (蒋童童), Yin Nai-Qiang (尹乃强), Liu Ling (刘玲), Lei Jie-Mei (雷洁梅), Zhu Li-Xin (朱立新), Xu Xiao-Liang (许小亮) A novel method to prepare Au nanocage@SiO2 nanoparticle 2013 Chin. Phys. B 22 126102
|
[1] |
Sun Y G and Xia Y N 2004 J. Am. Chem. Soc. 126 3892
|
[2] |
Skrabalak S E, Au L, Li X D and Xia Y N 2007 Nat. Protoc. 2 2183
|
[3] |
Chen J, Sun Y G, Lu X M, Au L, Cobley C M and Xia Y N 2008 Acc. Chem. Res. 41 1587
|
[4] |
Young J K, Figueroa E R and Drezek R A 2012 Ann. Biomed. Eng. 40 438
|
[5] |
Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G, Wang L V and Xia Y N 2009 Nat. Mater. 8 935
|
[6] |
Yang X M, Skrabalak S, Stein E, Wu B, Wei X B, Xia Y N and Wang L V 2008 Proc. SPIE 6856 68560I
|
[7] |
Kong X M, Yu Q, Zhang X F, Du X Z, Gong H and Jiang H 2012 J. Mater. Chem. 22 7767
|
[8] |
Bahadur N M, Watanabe S, Furusawa T, Sato M, Kurayama F, Siddiquey I A, Kobayashi Y and Suzuki N 2011 Elsevier B.V. 392 137
|
[9] |
Li C Y, Zhu Y H, Zhang X Q, Yang X L and Li C Z 2012 RSC Adv. 2 1765
|
[10] |
Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
|
[11] |
Gao F, Han J X, Lü C F, Wang Q, Zhang J, Li Q, Bao L R and Li X J 2012 Nanopart. Res. 14 1191
|
[12] |
Mathias S, Christian C, Philip B, Eoin M and Tobias K 2011 Langmuir 27 727
|
[13] |
Guo L Q, Guan A H, Lin X L, Zhang C L and Chen G N 2010 Talanta 82 1696
|
[14] |
Khlebtsov B, Panfilova E, Khanadeev V, Bibikova O, Terentyuk G, Ivanov A, Rumyantseva V, Shilov I, Ryabova A, Loshchenov V and Khlebtsov N G 2011 ACS Nano. 27 7077
|
[15] |
Zhang R C, Liu L and Xu X L 2011 Chin. Phys. B 20 086101
|
[16] |
Yin N Q, Liu L, Lei J M, Liu Y S, Gong M G, Wu Y Z, Zhu L X and Xu X L 2012 Chin. Phys. B 21 116101
|
[17] |
Siekkinen A R, McLellan J M, Chen J Y and Xia Y N 2006 Chem. Phys. Lett. 432 491
|
[18] |
Chen J Y, McLellan J M, Siekkinen A, Xiong Y J, Li Z Y and Xia Y N 2006 J. Am. Chem. Soc. 128 14776
|
[19] |
Li L L, Zhang Y Q, Hao N J, Chen D and Tang F Q 2012 Chin. Sci. Bull. 57 36313638
|
[20] |
Wong Y J, Zhu L F, Teo W S, Tan Y W, Yang Y H, Wang C and Chen H Y 2011 J. Am. Chem. Soc. 133 11422
|
[21] |
Mao W Y, Guo J, Yang W L, Wang C C, He J and Chen J Y 2007 Nanotechnology 18 485611
|
[22] |
Liu N G, Prall B S and Klimov V I 2006 J. Am. Chem. Soc. 128 15362
|
[23] |
Ung T, Liz-Marzán L M and Mulvaney P 1998 Langmuir 14 3741
|
[24] |
Hermoso W, Alves T V, Ornellas F R and Camargo P H C 2012 Eur. Phys. J. D 66 135
|
[25] |
Kan C X, Zhu J J and Zhu X G 2008 J. Phys. D: Appl. Phys. 41 155304
|
[26] |
Ringe E, McMahon J M, Sohn K, Cobley C, Xia Y N, Huang J X, Schatz G C, Marks L D and Van Duyne R P 2010 J. Phys. Chem. C 114 12513
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|