Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 118701    DOI: 10.1088/1674-1056/22/11/118701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy

Jin Wu-Jun (金武军), Li Tao (李涛), Zhao Kun (赵昆), Zhao Hui (赵卉)
College of Science, China University of Petroleum, Beijing 102249, China
Abstract  Terahertz time-domain spectroscopy (THz-TDS) is used to study the interaction between AlCl3 and o-xylene in a temperature range from 300 K to 368 K. For comparison, the three isomers of o-, m-, and p-xylene are measured by using THz-TDS. The o-xylene carries out isomerization reaction in the presence of catalyst AlCl3. The absorption coefficient of the mixed reaction solution is extracted and analyzed in the frequency range from 0.2 THz to 1.4 THz. The temperature dependence of the absorption coefficient, which is influenced by both the dissolution of AlCl3 and the production of the two other isomer resultants, is obtained, and it can indicate the process of the isomerization reaction. The results suggest that THz spectroscopy can be used to monitor the isomerization reaction and other reactions in chemical synthesis, petrochemical and biomedical fields.
Keywords:  terahertz      ultrafast spectroscopy      absorption coefficient  
Received:  25 July 2013      Revised:  16 August 2013      Accepted manuscript online: 
PACS:  87.50.ux (Therapeutic applications)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB328706), the Specially Funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ14005), the Beijing National Science Foundation, China (Grant No. 4122064), and the Science Foundation of the China University of Petroleum (Beijing) (Grant Nos. QZDX-2010-01 and KYJJ2012-06-27).
Corresponding Authors:  Zhao Kun     E-mail:  zhk@cup.edu.cn

Cite this article: 

Jin Wu-Jun (金武军), Li Tao (李涛), Zhao Kun (赵昆), Zhao Hui (赵卉) Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy 2013 Chin. Phys. B 22 118701

[1] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[2] Bao R M, Zhao K, Tian L, Zhou Q L, Shi Y L, Zhao D M, Zhang C L, Zhao H, Zhu S M, Miao Q and Lan X Y 2010 Sci. Sin. Phys. Mech. Astron. 40 950
[3] Bao R M, Wu S X, Zhao K, Zheng L J and Tian L 2012 Sci. Sin. Phys. Mech. Astron. 42 458
[4] Tian L, Zhou Q L, Jin B, Zhao K, Zhao S Q, Shi Y L and Zhang C L 2009 Sci. Sin. Phys. Mech. Astron. 39 1589
[5] Wu X J, E Y W, Xu X L and Wang L 2012 Appl. Phys. Lett. 101 033704
[6] Liu X H, Liu G F, Zhao H W, Zhang Z Y, Wei Y B, Liu M, Wen W and Zhou X T 2011 J. Phys. Chem. Solids 72 1245
[7] Fu X J, Yang G, Sun J B and Zhou J 2012 J. Phys. Chem. A 116 7314
[8] Collins D J and Scharff R P 1983 Appl. Catalysis 8 273
[9] Cho E B, Kim D, Gorka J and Jaroniec M 2009 J. Phys. Chem. C 113 5111
[10] Demirci U B, Akdim O and Miele P 2009 J. Power Sources 192 310
[11] Saidi M R, Pourshojaei Y and Aryanasab F 2009 Synthetic Commun. 39 1109
[12] Xu T, Kob N, Drago R S, Nicholas J B and Haw J F 1997 J. Am. Chem. Soc. 119 12231
[13] Zhang Z Y, Yu X H, Zhao H W, Xiao T Q, Xi Z J and Xu H J 2007 Opt. Commun. 277 273
[14] Zheng Z P, Fan W H, Yan H, Liu J, Yang W Z and Zhu S L 2012 J. Molecular Spectroscopy 281 13
[15] Upadhya P C, Shen Y C, Davies A G and Linfield E H 2003 J. Biological Phys. 29 117
[16] Al-Douseri F M, Chen Y Q and Zhang X C 2006 Inter. J. Infrared Milli. Waves 27 481
[17] Oppenheim K C, Korter T M, Melinger J S and Grischkowsky D 2010 J. Phys. Chem. A 114 12513
[18] Zhao H, Zhao K and Bao R M 2012 J. Infrared Milli. Terahz. Waves 33 522
[19] Beard M.C, Turner G M and Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146
[20] Yu B L, Yang Y, Zeng F, Xin X and Alfano R R 2005 Appl. Phys. Lett. 86 061912
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!