Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117807    DOI: 10.1088/1674-1056/22/11/117807
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical total reflection and transmission with mode control in a dielectric subwavelength nanorod chain

Li Hao (李浩)a b, Li Wei (李伟)a, Du Jun-Jie (杜俊杰)a, Wu Ai-Min (武爱民)a, Qiu Chao (仇超)a b, Sheng Zhen (盛振)a, Wang Xi (王曦)a, Zou Shi-Chang (邹世昌)a, Gan Fu-Wan (甘甫烷)a
a State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report a polarization dependent reflection phenomenon beyond the normal incidence with a subwavelength nanorod chain. Light waves of the transverse electric mode will be totally reflected while those of the transverse magnetic mode will transmit through. The total reflection or transmission phenomenon can be seen as a constructive or destructive interference of the incident field with the transverse mode field of the chain. With the low-loss feature and the ultra-compact characteristic, this structure may find applications in photonic circuits.
Keywords:  nanorod      reflection  
Received:  23 February 2013      Revised:  23 April 2013      Accepted manuscript online: 
PACS:  78.67.Qa (Nanorods)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107031, 11104305, 11204340, and 61275112), the National High Technology Research and Development Program of China (Grant No. 2012AA012202), and the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 10DJ1400400, 11ZR1443700, and 11ZR1443800).
Corresponding Authors:  Li Wei, Gan Fu-Wan     E-mail:  waylee@mail.sim.ac.cn;fuwan@mail.sim.ac.cn

Cite this article: 

Li Hao (李浩), Li Wei (李伟), Du Jun-Jie (杜俊杰), Wu Ai-Min (武爱民), Qiu Chao (仇超), Sheng Zhen (盛振), Wang Xi (王曦), Zou Shi-Chang (邹世昌), Gan Fu-Wan (甘甫烷) Optical total reflection and transmission with mode control in a dielectric subwavelength nanorod chain 2013 Chin. Phys. B 22 117807

[1] Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
[2] Maystre D 2001 Opt. Express 8 209
[3] Mocella V, Dardano P, Moretti L and Rendina I 2007 Opt. Express 15 6605
[4] Lousse V, Suh W, Kilic O, Kim S, Solgaard O and Fan S 2004 Opt. Express 12 1575
[5] Boutami S, Bakir B, Hattori H, Letartre X, Leclercq J L, Rojo-Romeo P, Garrigues M, Seassal C and Viktorovitch P 2006 IEEE Photonics Technology Letters 18 835
[6] Peng S and Morris G M 1996 Opt. Lett. 21 549
[7] Wang G T, Xue C S and Yang Z Z 2008 Chin. Phys. B 17 1326
[8] Sun L F, Chen C Y, Sun L F, Zheng K H, Liu Z, Liu J and Hu L J 2010 Chin. Phys. B 19 026101
[9] Shi S L, Liu Y G, Shi S L and Wang T H 2009 Chin. Phys. B 18 4564
[10] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[11] Du J, Liu S, Lin Z, Zi J and Chui S T 2009 Phys. Rev. A 79 051801
[12] Mazzitello K I, Mártin H O, Aldao C M and Roman H E 2004 J. Phys. D: Appl. Phys. 37 668
[13] Laroche M, Albaladejo S, Carminati R and Sáenz J J 2007 Opt. Lett. 32 2762
[14] Boriskina S V and Reinhard B M 2011 Opt. Express 19 22305
[15] Marinica D C, Borisov A G and Shabanov S V 2007 Phys. Rev. B 76 085311
[16] Xiao S, Su X R, Li C, Han Y B, Fang G J and Wang Q Q 2008 Chin. Phys. B 17 1291
[17] Maier S A, Brongersma M L, Kik P G and Atwater H A 2002 Phys. Rev. B 65 193408
[18] Maier S A, Kik P G and Atwater H A 2002 Appl. Phys. Lett. 81 1714
[19] Crozier K B, Togan E, Simsek E and Yang T 2007 Opt. Express 15 17482
[20] Devilez A, Stout B and Bonod N 2010 Phys. Rev. B 81 245128
[21] Du J, Lin Z, Chui S T, Lu W, Li H, Wu A, Sheng Z, Zi J, Wang X, Zou S and Gan F 2011 Phys. Rev. Lett. 106 203903
[22] Hulst H C 1981 Light Scattering by Small Particles (New York: Dover) pp. 297–232
[23] Wang P, Cao B, Gan Z and Liu S 2011 J. Phys.: Conference Series 276 012083
[24] Li W, Chen J, Nouet G, Chen L and Jiang X 2011 Appl. Phys. Lett. 99 051112
[1] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[4] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[5] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[6] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[7] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[8] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[9] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[10] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[11] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[12] Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle
Zhi-Wei Cui(崔志伟), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飞), Ju Wang(王举), and Yi-Ping Han(韩一平). Chin. Phys. B, 2021, 30(4): 044201.
[13] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[14] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[15] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
No Suggested Reading articles found!