Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107802    DOI: 10.1088/1674-1056/22/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range

Zuo Zhi-Gao (左志高)a b, Ling Fu-Ri (凌福日)b, Ma De-Cai (马德才)c, Wu Liang (吴亮)d, Liu Jin-Song (刘劲松)a, Yao Jian-Quan (姚建铨)a d
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
c Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou 510275, China;
d College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  The absorption coefficient of magnesium-doped near-stoichiometric lithium niobate crystal is measured by terahertz time-domain spectroscopy in a frequency range of 0.2 THz-0.9 THz at room temperature. The absorption coefficient is modulated by external optical pump fields. Experimental results show that the absorption coefficient of near-SLN:Mg crystal is approximately in a range of 22 cm-1-35 cm-1 in a frequency range of 0.2 THz-0.9 THz and tunable up to nearly 15%. Further theoretical analysis reveals that the variation of absorption coefficient is related to the number of light-induced carriers, domain reversal process, and OH- absorption in this crystal.
Keywords:  near-stoichiometric LiNbO3:Mg      terahertz      absorption coefficient      domain reversal  
Received:  08 March 2013      Revised:  02 April 2013      Accepted manuscript online: 
PACS:  78.20.Mg (Photorefractive effects)  
  42.70.Mp (Nonlinear optical crystals)  
  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974063, 61205096, and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 02-16-230008, 2010CDA001, and 2012FFA074), the Research Foundation of Huazhong University of Science and Technology, China (Grant No. 01-09-230904), the Ph. D. Program Foundation of Ministry of Education of China (Grant No. 20100142110042), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2010MS041 and 2011TS001).
Corresponding Authors:  Ling Fu-Ri     E-mail:  lingfuri@163.com

Cite this article: 

Zuo Zhi-Gao (左志高), Ling Fu-Ri (凌福日), Ma De-Cai (马德才), Wu Liang (吴亮), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨) The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range 2013 Chin. Phys. B 22 107802

[1] Bradley F and Zhang X C 2003 Physics 32 286 (in Chinese)
[2] Ding X, Zhang S M, Ma H M, Pang M, Yao J Q and Li Z 2008 Chin. Phys. B 17 1674
[3] Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P and Yao J Q 2009 Chin. Phys. B 18 4314
[4] Shen S K, Yang A Y, Zuo L, Cui J M and Sun Y N 2011 Chin. Phys. B 20 104206
[5] Furukawa Y, Kitamura K, Takekawa S, Niwa K and Hatano H 1998 Opt. Lett. 23 1892
[6] Furukawa Y, Kitamura K, Alexandrovski A, Route R K, Fejer M M and Foulon G 2001 Appl. Phys. Lett. 78 1970
[7] Pálfalvi L, Hebling J, Almási G, Péter Á and Polgár K 2003 J. Opt. A: Pure Appl. Opt. 5 S280
[8] Wang W J, Kong Y F, Liu H D, Hu Q, Liu S G, Chen S L and Xu J Q 2009 J. Appl. Phys. 105 043105
[9] Chen X J, Zhu D S, Li B, Ling T and Wu Z K 2001 Opt. Lett. 26 998
[10] Chen X J, Li B, Xu J J, Zhu D S, Pan S H and Wu Z K 2001 J. Appl. Phys. 90 1516
[11] Galambos L, Orlov S S, Hessenlink L, Furukawa Y, Kitamura K and Takekawa S 2001 J. Crystals Growth 229 228
[12] Abdi F, Aillerie M, Bourson P, Fontana M D and Polgar K 1998 J. Appl. Phys. 84 2251
[13] Sun D L, Hang Y, Zhang L H, Qian X B, Li S F, Xu J, Luo G Z, Zhu S N, Zhu Y Y, Lim P K, Hung W W and Tang T B 2002 J. Synth. Crystals 31 314 (in Chinese)
[14] Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L and Bing P B 2011 Chin. Phys. B 20 054207
[15] Polgár K, Péter Á, Kovács L, Corradi G and Szaller Zs 1997 J. Crystals Growth 177 211
[16] Bordui P F, Norwood R G, Jundt D H and Fejer M M 1992 J. Appl. Phys. 71 875
[17] Brian S 2008 "Miniature Terahertz Time-Domain Spectrometry", Ph. D. dissertation (New York: Rensselaer Polytechnic Institute)
[18] Pálfalvi L, Hebling J, Kuhl J, Péter Á and Polgár K 2005 J. Appl. Phys. 97 123505
[19] Chen Y C, Wu L, Chou Y P and Tsai Y T 2000 Mater. Sci. Eng. B 76 95
[20] Johnson K M 1962 J. Appl. Phys. 33 2826
[21] Smith R G, Fraser D B, Denton R T and Rich T C 1968 J. Appl. Phys. 39 4600
[22] Cabrera J M, Olivares J, Carrascosa M, Rams J, Müller R and Diéguez E 1996 Adv. Phys. 45 349
[23] Wöhlecke M and Kovács L 2001 Crit. Rev. Solid State Mater. Sci. 26 1
[24] Kim I W, Park B C, Jin B M, Bhalla A S and Kim J W 1995 Mater. Lett. 24 157
[25] Heinemeyer U, Wengler M C and Buse K 2006 Appl. Phys. Lett. 89 112910
[26] Miller C A 1967 Brit. J. Appl. Phys. 18 1689
[27] Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2011 J. Opt. 13 105501
[28] Chen F S 1969 J. Appl. Phys. 40 3389
[29] Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2012 Chin. Phys. B 21 017802
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!