CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range |
Zuo Zhi-Gao (左志高)a b, Ling Fu-Ri (凌福日)b, Ma De-Cai (马德才)c, Wu Liang (吴亮)d, Liu Jin-Song (刘劲松)a, Yao Jian-Quan (姚建铨)a d |
a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; c Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou 510275, China; d College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract The absorption coefficient of magnesium-doped near-stoichiometric lithium niobate crystal is measured by terahertz time-domain spectroscopy in a frequency range of 0.2 THz-0.9 THz at room temperature. The absorption coefficient is modulated by external optical pump fields. Experimental results show that the absorption coefficient of near-SLN:Mg crystal is approximately in a range of 22 cm-1-35 cm-1 in a frequency range of 0.2 THz-0.9 THz and tunable up to nearly 15%. Further theoretical analysis reveals that the variation of absorption coefficient is related to the number of light-induced carriers, domain reversal process, and OH- absorption in this crystal.
|
Received: 08 March 2013
Revised: 02 April 2013
Accepted manuscript online:
|
PACS:
|
78.20.Mg
|
(Photorefractive effects)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
87.50.U-
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974063, 61205096, and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 02-16-230008, 2010CDA001, and 2012FFA074), the Research Foundation of Huazhong University of Science and Technology, China (Grant No. 01-09-230904), the Ph. D. Program Foundation of Ministry of Education of China (Grant No. 20100142110042), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2010MS041 and 2011TS001). |
Corresponding Authors:
Ling Fu-Ri
E-mail: lingfuri@163.com
|
Cite this article:
Zuo Zhi-Gao (左志高), Ling Fu-Ri (凌福日), Ma De-Cai (马德才), Wu Liang (吴亮), Liu Jin-Song (刘劲松), Yao Jian-Quan (姚建铨) The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range 2013 Chin. Phys. B 22 107802
|
[1] |
Bradley F and Zhang X C 2003 Physics 32 286 (in Chinese)
|
[2] |
Ding X, Zhang S M, Ma H M, Pang M, Yao J Q and Li Z 2008 Chin. Phys. B 17 1674
|
[3] |
Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P and Yao J Q 2009 Chin. Phys. B 18 4314
|
[4] |
Shen S K, Yang A Y, Zuo L, Cui J M and Sun Y N 2011 Chin. Phys. B 20 104206
|
[5] |
Furukawa Y, Kitamura K, Takekawa S, Niwa K and Hatano H 1998 Opt. Lett. 23 1892
|
[6] |
Furukawa Y, Kitamura K, Alexandrovski A, Route R K, Fejer M M and Foulon G 2001 Appl. Phys. Lett. 78 1970
|
[7] |
Pálfalvi L, Hebling J, Almási G, Péter Á and Polgár K 2003 J. Opt. A: Pure Appl. Opt. 5 S280
|
[8] |
Wang W J, Kong Y F, Liu H D, Hu Q, Liu S G, Chen S L and Xu J Q 2009 J. Appl. Phys. 105 043105
|
[9] |
Chen X J, Zhu D S, Li B, Ling T and Wu Z K 2001 Opt. Lett. 26 998
|
[10] |
Chen X J, Li B, Xu J J, Zhu D S, Pan S H and Wu Z K 2001 J. Appl. Phys. 90 1516
|
[11] |
Galambos L, Orlov S S, Hessenlink L, Furukawa Y, Kitamura K and Takekawa S 2001 J. Crystals Growth 229 228
|
[12] |
Abdi F, Aillerie M, Bourson P, Fontana M D and Polgar K 1998 J. Appl. Phys. 84 2251
|
[13] |
Sun D L, Hang Y, Zhang L H, Qian X B, Li S F, Xu J, Luo G Z, Zhu S N, Zhu Y Y, Lim P K, Hung W W and Tang T B 2002 J. Synth. Crystals 31 314 (in Chinese)
|
[14] |
Li Z Y, Yao J Q, Xu D G, Zhong K, Wang J L and Bing P B 2011 Chin. Phys. B 20 054207
|
[15] |
Polgár K, Péter Á, Kovács L, Corradi G and Szaller Zs 1997 J. Crystals Growth 177 211
|
[16] |
Bordui P F, Norwood R G, Jundt D H and Fejer M M 1992 J. Appl. Phys. 71 875
|
[17] |
Brian S 2008 "Miniature Terahertz Time-Domain Spectrometry", Ph. D. dissertation (New York: Rensselaer Polytechnic Institute)
|
[18] |
Pálfalvi L, Hebling J, Kuhl J, Péter Á and Polgár K 2005 J. Appl. Phys. 97 123505
|
[19] |
Chen Y C, Wu L, Chou Y P and Tsai Y T 2000 Mater. Sci. Eng. B 76 95
|
[20] |
Johnson K M 1962 J. Appl. Phys. 33 2826
|
[21] |
Smith R G, Fraser D B, Denton R T and Rich T C 1968 J. Appl. Phys. 39 4600
|
[22] |
Cabrera J M, Olivares J, Carrascosa M, Rams J, Müller R and Diéguez E 1996 Adv. Phys. 45 349
|
[23] |
Wöhlecke M and Kovács L 2001 Crit. Rev. Solid State Mater. Sci. 26 1
|
[24] |
Kim I W, Park B C, Jin B M, Bhalla A S and Kim J W 1995 Mater. Lett. 24 157
|
[25] |
Heinemeyer U, Wengler M C and Buse K 2006 Appl. Phys. Lett. 89 112910
|
[26] |
Miller C A 1967 Brit. J. Appl. Phys. 18 1689
|
[27] |
Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2011 J. Opt. 13 105501
|
[28] |
Chen F S 1969 J. Appl. Phys. 40 3389
|
[29] |
Wu L, Ling F R, Zuo Z G, Liu J S and Yao J Q 2012 Chin. Phys. B 21 017802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|