Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106109    DOI: 10.1088/1674-1056/22/10/106109
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of chromium on structure and mechanical properties of vanadium:A first-principles study

Gui Li-Jiang (桂漓江)a, Liu Yue-Lin (刘悦林)b, Wang Wei-Tian (王伟田)b, Zhang Ying (张颖)a, Lü Guang-Hong (吕广宏)a, Yao Jun-En (姚骏恩)a
a Department of Physics and Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191, China;
b Department of Physics, Yantai University, Yantai 264005, China
Abstract  Stability and diffusion of chromium (Cr) in vanadium (V), the interaction of Cr with vacancies, and the ideal mechanical properties of V are investigated by first-principles calculations. A single Cr atom is energetically favored in the substitution site. Vacancy plays a key role in the trapping of Cr in V. A very strong binding exists between a single Cr atom and the vacancy with a binding energy of 5.03 eV. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 19.1 GPa at the strain of 18% along the [100] direction for the ideal V single crystal, while it decreases to 16.4 GPa at a strain of 12% when one impurity Cr atom is introduced in a 128-atom V supercell. For shear deformation along the most preferable {110}<111> slip system in V, we found that one substitutional Cr atom can decrease the cleavage energy (γcl) and simultaneously increase the unstable stacking fault energy (γus) in comparison with the ideal V case. The reduced ratio of γcl/γus in comparison with pure V suggests that the presence of Cr can decrease the ductility of V.
Keywords:  vanadium      chromium      structure      mechanical properties      first-principles  
Received:  20 January 2013      Revised:  23 May 2013      Accepted manuscript online: 
PACS:  61.82.Bb  
  62.20.-x (Mechanical properties of solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51061130558) and the Natural Science Foundation of Shandong Province of China (Grant No. ZR2011AM014).
Corresponding Authors:  Liu Yue-Lin, Lü Guang-Hong     E-mail:  liuyl@ytu.edu.cn;lgh@buaa.edu.cn

Cite this article: 

Gui Li-Jiang (桂漓江), Liu Yue-Lin (刘悦林), Wang Wei-Tian (王伟田), Zhang Ying (张颖), Lü Guang-Hong (吕广宏), Yao Jun-En (姚骏恩) Effects of chromium on structure and mechanical properties of vanadium:A first-principles study 2013 Chin. Phys. B 22 106109

[1] Wang C, Zhang Y M and Zhang Y M 2007 Chin. Phys. 16 1417
[2] Yang X Y, Hu W Y, Yuan X J and Cai X H 2008 Chin. Phys. B 17 2633
[3] Wang T, Jiang Y D, Yu H, Wu Z M and Zhao H N 2011 Chin. Phys. B 20 038101
[4] Satou M, Abe K and Kayano H 1991 J. Nucl. Mater. 179-181 757
[5] Rowcliffe A F, Zinkle S J and Hoelzer D T 2000 J. Nucl. Mater. 283-287 508
[6] Kurtz R J and Hamilton M L 2000 J. Nucl. Mater. 283-287 628
[7] Dyomina E V, Fenici P, Kolotov V P and Zucchetti M 1998 J. Nucl. Mater. 258-263 1784
[8] Jones R H, Heinisch H L and McCarthy K A 1999 J. Nucl. Mater. 271-272 518
[9] Taylor N P, Forty C B A, Petti D A and McCarthy K A 2000 J. Nucl. Mater. 283-287 28
[10] Bloom E E, Conn R W, Davis J W, Gold R E, Little R, Schultz K R, Smith D L and Wiffen F W 1984 J. Nucl. Mater. 122 17
[11] Smith D L 1985 Fus. Technol. 81 10
[12] Kirillov I R, Danilov I V, Sidorenkov S I, Strebkov Y S, Mattas R F, Gohar Y, Hua T Q and Smith D L 1998 Fus. Eng. Des. 39-40 669
[13] Gohar Y, Majumdar S and Smith D L 2000 Fus. Eng. Des. 49-50 551
[14] Muroga T, Chen J M, Chernov V M, Fukumoto K, Hoelzer D T, Kurtz R J, Nagasaka T, Pint B A, Satou M, Suzuki A and Watanabe H 2007 J. Nucl. Mater. 367-370 780
[15] Sato T, Okita T and Sekimura N 2002 J. Nucl. Mater. 307-311 385
[16] Loomis B A, Smith D L and Garner F A 1991 J. Nucl. Mater. 179-181 771
[17] Loomis B A and Smith D L 1992 J. Nucl. Mater. 191-194 84
[18] Li X Q, Zhang C, Zhao J J and Johansson B 2011 Comput. Mater. Sci. 50 2727
[19] Kresse G and Hafner J, 1993 Phys. Rev. B 47 558
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[22] Blochl P E 1994 Phys. Rev. B 50 17953
[23] Kittel C 1996 Introduction to Solid State Physics, 7th edn. (New York: Wiley)
[24] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Willaime F 2003 J. Nucl. Mater. 323 205
[26] Fu C C, Willaime F and Ordejon P 2004 Phys. Rev. Lett. 92 175503
[27] Nagasako N, Jahnatek M, Asahi R and Hafne J 2010 Phys. Rev. B 81 094108
[28] Harrod D L and Gold R E 1980 Int. Mater. Rev. 25 162
[29] Rice J R 1992 J. Mech. Phys. Solids 40 239
[30] Fu C L, 1990 J. Mater. Res. 5 971
[31] Gong H R 2009 Intermetallics 17 562
[32] Vitek V 1968 Phil. Mag. 18 773
[33] Christian J W and Vitek V 1970 Rep. Prog. Phys. 33 307
[34] Wei Y, Zhang Y, Zhou H B, Lu G H and Xu H B 2012 Intermetallics 22 41
[35] Wei Y, Zhang Y, Lu G H and Xu H B 2012 Intermetallics 31 105
[36] Pan F S, Luo S Q, Tang A T, Peng J and Lu Y 2011 Progress in Natural Science: Materials International 21 485
[37] Loomis B A, Chung H M, Nowicki L J and Smith D L 1994 J. Nucl. Mater. 212-215 799
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[6] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[11] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[12] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[13] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[14] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[15] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
No Suggested Reading articles found!